No Arabic abstract
An analytical expression for the von Neumann entropy of the Laughlin wave function is obtained for any possible bipartition between the particles described by this wave function, for filling fraction nu=1. Also, for filling fraction nu=1/m, where m is an odd integer, an upper bound on this entropy is exhibited. These results yield a bound on the smallest possible size of the matrices for an exact representation of the Laughlin ansatz in terms of a matrix product state. An analytical matrix product state representation of this state is proposed in terms of representations of the Clifford algebra. For nu=1, this representation is shown to be asymptotically optimal in the limit of a large number of particles.
We construct a quantum algorithm that creates the Laughlin state for an arbitrary number of particles $n$ in the case of filling fraction one. This quantum circuit is efficient since it only uses $n(n-1)/2$ local qudit gates and its depth scales as $2n-3$. We further prove the optimality of the circuit using permutation theory arguments and we compute exactly how entanglement develops along the action of each gate. Finally, we discuss its experimental feasibility decomposing the qudits and the gates in terms of qubits and two qubit-gates as well as the generalization to arbitrary filling fraction.
At 6th order in perturbation theory, the random magnetic impurity problem at second order in impurity density narrows down to the evaluation of a single Feynman diagram with maximal impurity line crossing. This diagram can be rewritten as a sum of ordinary integrals and nested double integrals of products of the modified Bessel functions $K_{ u}$ and $I_{ u}$, with $ u=0,1$. That sum, in turn, is shown to be a linear combination with rational coefficients of $(2^5-1)zeta(5)$, $int_0^{infty} u K_0(u)^6 du$ and $int_0^{infty} u^3 K_0(u)^6 du$. Unlike what happens at lower orders, these two integrals are not linear combinations with rational coefficients of Euler sums, even though they appear in combination with $zeta(5)$. On the other hand, any integral $int_0^{infty} u^{n+1} K_0(u)^p (uK_1(u))^q du$ with weight $p+q=6$ and an even $n$ is shown to be a linear combination with rational coefficients of the above two integrals and 1, a result that can be easily generalized to any weight $p+q=k$. A matrix recurrence relation in $n$ is built for such integrals. The initial conditions are such that the asymptotic behavior is determined by the smallest eigenvalue of the transition matrix.
We study lattice wave functions obtained from the SU(2)$_1$ Wess-Zumino-Witten conformal field theory. Following Moore and Reads construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields. By an additional insertion of Kac-Moody currents, we associate a wave function to each state of the conformal field theory. These wave functions span the complete Hilbert space of the lattice system. On the cylinder, we study global properties of the lattice states analytically and correlation functions numerically using a Metropolis Monte Carlo method. By comparing short-range bulk correlations, numerical evidence is provided that the states with one current operator represent edge states in the thermodynamic limit. We show that the edge states with one Kac-Moody current of lowest order have a good overlap with low-energy excited states of a local Hamiltonian, for which the Kalmeyer-Laughlin state approximates the ground state. For some states, exact parent Hamiltonians are derived on the cylinder. These Hamiltonians are SU(2) invariant and nonlocal with up to four-body interactions.
We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative algorithm. The logarithm of the overlap, which is a geometric quantity, is then taken as a geometric measure of entanglement. It is found that the geometric entanglement is a linear function of the number of electrons to a good extent. This is especially the case for the lowest Laughlin wave function, namely the one with filling factor of $1/3$. Surprisingly, the linear behavior extends well down to the smallest possible value of the electron number, namely, $ N= 2$. The constant term does not agree with the expected topological entropy.
Interfaces between topologically distinct phases of matter reveal a remarkably rich phenomenology. We study the experimentally relevant interface between a Laughlin phase at filling factor $ u=1/3$ and a Halperin 332 phase at filling factor $ u=2/5$. Based on our recent construction of chiral topological interfaces in [Nat. Commun. 10, 1860 (2019)], we study a family of model wavefunctions that captures both the bulk and interface properties. These model wavefunctions are built within the matrix product state framework. The validity of our approach is substantiated through extensive comparisons with exact diagonalization studies. We probe previously unreachable features of the low energy physics of the transition. We provide, amongst other things, the characterization of the interface gapless mode and the identification of the spin and charge excitations in the many-body spectrum. The methods and tools presented are applicable to a broad range of topological interfaces.