Do you want to publish a course? Click here

Length scale dependent relaxation in colloidal gels

231   0   0.0 ( 0 )
 Added by Emanuela Del Gado
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use molecular dynamics computer simulations to investigate the relaxation dynamics of a simple model for a colloidal gel at a low volume fraction. We find that due to the presence of the open spanning network this dynamics shows at low temperature a non-trivial dependence on the wave-vector which is very different from the one observed in dense glass-forming liquids. At high wave vectors the relaxation is due to the fast cooperative motion of the branches of the gel network, whereas at low wave vectors the overall rearrangements of the heterogeneous structure produce the relaxation process.



rate research

Read More

We sandwich a colloidal gel between two parallel plates and induce a radial flow by lifting the upper plate at a constant velocity. Two distinct scenarios result from such a tensile test: ($i$) stable flows during which the gel undergoes a tensile deformation without yielding, and ($ii$) unstable flows characterized by the radial growth of air fingers into the gel. We show that the unstable regime occurs beyond a critical energy input, independent of the gels macroscopic yield stress. This implies a local fluidization of the gel at the tip of the growing fingers and results in the most unstable wavelength of the patterns exhibiting the characteristic scalings of the classical viscous fingering instability. Our work provides a quantitative criterion for the onset of fingering in colloidal gels based on a local shear-induced yielding, in agreement with the delayed failure framework.
Rigidity percolation (RP) occurs when mechanical stability emerges in disordered networks as constraints or components are added. Here we discuss RP with structural correlations, an effect ignored in classical theories albeit relevant to many liquid-to-amorphous-solid transitions, such as colloidal gelation, which are due to attractive interactions and aggregation. Using a lattice model, we show that structural correlations shift RP to lower volume fractions. Through molecular dynamics simulations, we show that increasing attraction in colloidal gelation increases structural correlation and thus lowers the RP transition, agreeing with experiments. Hence colloidal gelation can be understood as a RP transition, but occurs at volume fractions far below values predicted by the classical RP, due to attractive interactions which induce structural correlation.
We examine microstructural and mechanical changes which occur during oscillatory shear flow and reformation after flow cessation of an intermediate volume fraction colloidal gel using rheometry and Brownian Dynamics (BD) simulations. A model depletion colloid-polymer mixture is used, comprising of a hard sphere colloidal suspension with the addition of non-adsorbing linear polymer chains. Results reveal three distinct regimes depending on the strain amplitude of oscillatory shear. Large shear strain amplitudes fully break the structure which results into a more homogenous and stronger gel after flow cessation. Intermediate strain amplitudes densify the clusters and lead to highly heterogeneous and weak gels. Shearing the gel to even lower strain amplitudes creates a less heterogonous stronger solid. These three regimes of shearing are connected to the microscopic shear-induced structural heterogeneity. A comparison with steady shear flow reveals that the latter does not produce structural heterogeneities as large as oscillatory shear. Therefore oscillatory shear is a much more efficient way of tuning the mechanical properties of colloidal gels. Moreover, colloidal gels presheared at large strain amplitudes exhibit a distinct nonlinear response characterized largely by a single yielding process while in those presheared at lower rates a two step yield process is promoted due to the creation of highly heterogeneous structures.
We study a lattice model of attractive colloids. It is exactly solvable on sparse random graphs. As the pressure and temperature are varied it reproduces many characteristic phenomena of liquids, glasses and colloidal systems such as ideal gel formation, liquid-glass phase coexistence, jamming, or the reentrance of the glass transition.
Catalytic colloidal swimmers that propel due to self-generated fluid flows exhibit strong affinity for surfaces. We here report experimental measurements of significantly different velocities of such microswimmers in the vicinity of substrates made from different materials. We find that velocities scale with the solution contact angle $theta$ on the substrate, which in turn relates to the associated hydrodynamic substrate slip length, as $Vpropto(costheta+1)^{-3/2}$. We show that such dependence can be attributed to osmotic coupling between swimmers and substrate. Our work points out that hydrodynamic slip at the wall, though often unconsidered, can significantly impact the self-propulsion of catalytic swimmers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا