Do you want to publish a course? Click here

Low frequency Raman studies of multi-wall carbon nanotubes: experiments and theory

359   0   0.0 ( 0 )
 Added by Olivier Chauvet
 Publication date 2002
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we investigate the low frequency Raman spectra of multi-wall carbon nanotubes (MWNT) prepared by the electric arc method. Low frequency Raman modes are unambiguously identified on purified samples thanks to the small internal diameter of the MWNT. We propose a model to describe these modes. They originate from the radial breathing vibrations of the individual walls coupled through the Van der Waals interaction between adjacent concentric walls. The intensity of the modes is described in the framework of bond polarization theory. Using this model and the structural characteristics of the nanotubes obtained from transmission electron microscopy allows to simulate the experimental low frequency Raman spectra with an excellent agreement. It suggests that Raman spectroscopy can be as useful regarding the characterization of MWNT as it is in the case of single-wall nanotubes.



rate research

Read More

121 - Gang Wu , Jian Zhou , 2007
With the empirical bond polarizability model, the nonresonant Raman spectra of the chiral and achiral single-wall carbon nanotubes (SWCNTs) under uniaxial and torsional strains have been systematically studied by textit{ab initio} method. It is found that both the frequencies and the intensities of the low-frequency Raman active modes almost do not change in the deformed nanotubes, while their high-frequency part shifts obviously. Especially, the high-frequency part shifts linearly with the uniaxial tensile strain, and two kinds of different shift slopes are found for any kind of SWCNTs. More interestingly, new Raman peaks are found in the nonresonant Raman spectra under torsional strain, which are explained by a) the symmetry breaking and b) the effect of bond rotation and the anisotropy of the polarizability induced by bond stretching.
106 - Z. X. Guo , J. W. Ding , Y. Xiao 2007
In terms of lattice dynamics theory, we study the vibrational properties of the oxygen-functionalized single wall carbon nanotubes (O-SWCNs). Due to the C-O and O-O interactions, many degenerate phonon modes are split and even some new phonon modes are obtained, different from the bare SWCNs. A distinct Raman shift is found in both the radial breathing mode and G modes, depending not only on the tube diameter and chirality but also on oxygen coverage and adsorption configurations. With the oxygen coverage increasing, interesting, a nonmonotonic up- and down-shift is observed in G modes, which is contributed to the competition between the bond expansion and contraction, there coexisting in the functionalized carbon nanotube.
We exploit the near field enhancement of nano-antennas to investigate the Raman spectra of otherwise not optically detectable carbon nanotubes (CNTs). We demonstrate that a top-down fabrication approach is particularly promising when applied to CNTs, owing to the sharp dependence of the scattered intensity on the angle between incident light polarization and CNT axis. In contrast to tip enhancement techniques, our method enables us to control the light polarization in the sample plane, locally amplifying and rotating the incident field and hence optimizing the Raman signal. Such promising features are confirmed by numerical simulations presented here. The relative ease of fabrication and alignment makes this technique suitable for the realization of integrated devices that combine scanning probe, optical, and transport characterization.
108 - R. Egger , A.O. Gogolin 2001
We compute the tunneling density of states of doped multi-wall nanotubes including disorder and electron-electron interactions. A non-conventional Coulomb blockade reflecting nonperturbative Altshuler-Aronov-Lee power-law zero-bias anomalies is found, in accordance with recent experimental results. The presence of a boundary implies a universal doubling of the boundary exponent in the diffusive limit.
Raman spectroscopy on carbon nanotubes (CNT) yields a rich variety of information owing to the close interplay between electronic and vibrational properties. In this paper, we review the properties of double wall carbon nanotubes (DWCNTs). In particular, it is shown that SWCNT encapsulating C$_{60}$, so-called peapods, are transformed into DWCNTs when subject to a high temperature treatment. The inner tubes are grown in a catalyst free environment and do not suffer from impurities or defects that are usually encountered for as-grown SWCNTs or DWCNTs. As a consequence, the inner tubes are grown with a high degree of perfection as deduced from the unusually narrow radial breathing mode (RBM) lines. This apostrophizes the interior of the SWCNTs as a nano-clean room. The mechanism of the inner nanotube production from C$_{60}$ is discussed. We also report recent studies aimed at the simplification and industrial scaling up of the DWCNT production process utilizing a low temperature peapod synthesis method. A splitting of the RBMs of inner tubes is observed. This is related to the interaction between the two shells of the DWCNTs as the same inner tube type can be encapsulated in different outer ones. The sharp appearance of the inner tube RBMs allows a reliable assignment of the tube modes to (n,m) indexes and thus provides a precise determination of the relation between the tube diameter and the RBM frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا