Do you want to publish a course? Click here

The ROSAT Deep Survey IV. A distant lensing cluster of galaxies with a bright arc

115   0   0.0 ( 0 )
 Added by Guenther Hasinger
 Publication date 1998
  fields Physics
and research's language is English
 Authors G. Hasinger




Ask ChatGPT about the research

An unusual double-lobed extended X-ray source (RX J105343+5735) is detected in the ROSAT ultra-deep HRI image of the Lockman Hole. The angular size of the source is 1.7 X 0.7 arcmin^2 and its X-ray flux is 2 X 10^-14 erg cm^-2 s^-1. R-band imaging from the Keck telescope revealed a marginal excess of galaxies brighter than R=24.5, but Keck LRIS spectroscopy of 24 objects around the X-ray centroid did not yield a significant number of concordant redshifts. The brightest galaxy close to the centre of the eastern emission peak appears to be a gravitationally lensed arc at z=2.570, suggesting that the X-ray object is associated with the lens, most likely a cluster of galaxies. Based on a comparison of lensing surface mass density, X-ray luminosity, morphology and galaxy magnitudes with clusters of known distance, we argue that RX J105343+5735 is a cluster at a redshift around 1. Future X-ray, ground-based optical/NIR and high resolution HST observations of the system will be able to clarify the nature of the object.



rate research

Read More

386 - S.Schindler , L.Guzzo , H.Ebeling 1995
We report the discovery of two bright arcs in what turns out to be the brightest X--ray cluster in the ROSAT band ever observed, RXJ1347.5-1145. Its luminosity is $(6.2pm0.6) cdot10^{45}$erg s$^{-1}$ (in the range 0.1--2.4~keV). The arcs are most probably gravitationally lensed images of background galaxies. They were found serendipitously during our ongoing large--scale redshift survey of X--ray clusters detected by the ROSAT All Sky Survey. The arcs are almost opposite to each other with respect to the cluster centre, with a distance from it of about $35$ ($=240 h^{-1}_{50}$ kpc), a radius that enables the probing of a rather large cluster volume. In this Letter we limit ourselves to the discussion of the general optical and X--ray features of this cluster and to the potential implications of the gravitational arcs. A more detailed discussion of the different mass estimates and of the cosmological implications for this exceptional object are left for future work based on more accurate optical and X--ray data, which are currently being collected.
106 - S. Borgani 1999
The ROSAT Deep Cluster Survey (RDCS) has provided a new large deep sample of X-ray selected galaxy clusters. Observables such as the flux number counts n(S), the redshift distribution n(z) and the X-ray luminosity function (XLF) over a large redshift baseline (zlesssim 0.8) are used here in order to constrain cosmological models. Our analysis is based on the Press-Schechter approach, whose reliability is tested against N-body simulations. Following a phenomenological approach, no assumption is made a priori on the relation between cluster masses and observed X-ray luminosities. As a first step, we use the local XLF from RDCS, along with the high-luminosity extension provided by the XLF from the BCS, in order to constrain the amplitude of the power spectrum, sigma_8, and the shape of the local luminosity-temperature relation. We obtain sigma_8=0.58 +/- 0.06 for Omega_0=1 for open models at 90% confidence level, almost independent of the L-T shape. The density parameter Omega_0 and the evolution of the L-T relation are constrained by the RDCS XLF at z>0 and the EMSS XLF at z=0.33, and by the RDCS n(S) and n(z) distributions. By modelling the evolution for the amplitude of the L-T relation as (1+z)^A, an Omega_0=1 model can be accommodated for the evolution of the XLF with 1<A<3 at 90% confidence level, while Omega_0=0.4^{+0.3}_{-0.2} and Omega_0<0.6 are implied by a non--evolving L-T for open and flat models, respectively.
56 - S. Borgani 1999
We use the ROSAT Deep Cluster Survey (RDCS) to trace the evolution of the cluster abundance out to $zsimeq 0.8$ and constrain cosmological models. We resort to a phenomenological prescription to convert masses into $X$-ray fluxes and apply a maximum-likelihood approach to the RDCS redshift- and luminosity-distribution. We find that, even changing the shape and the evolution on the $L_{bol}$-$T_X$ relation within the observational uncertainties, a critical density Universe is always excluded at more than $3sigma$ level. By assuming a non-evolving $X$-ray luminosity-temperature relation with shape $L_{bol}propto T_X^3$, it is $Omega_m=0.35^{+0.35}_{-0.25}$ and $sigma_8=0.76^{+0.38}_{-0.14}$ for flat models, with uncertainties corresponding to $3sigma$ confidence levels.
We present the first results of mid-infrared (MIR) ultra-deep observations towards the lensing cluster Abell 2390 using the ISOCAM infrared camera on-board ESAs Infrared Space Observatory (ISO) satellite. They reveal a large number of luminous MIR sources. Optical and near-infrared (NIR) cross-identification suggests that almost all 15 microns sources and about half of the 7 microns are identified with distant lensed galaxies. Thanks to the gravitational amplification these sources constitute the faintest MIR sources detected. We confirm that the number counts derived at 15 microns show a clear excess of sources with respect to the predictions of a no-evolution model. The possible extension of the NGST instrumentation from the near-IR (1-5 microns) to the thermal infrared, up to 20 microns (as suggested by the NGST task group report, October 1997) would permit study of this new population of dust-enshrouded AGN/starburst galaxies detected by ISOCAM, up to very high redshifts and with vastly improved spatial resolution. The existence of this population demonstrats that the discrimination of dust contributions, possible in the MIR, must be an important consideration in reaching an understanding of the Universe at high redshift. Therefore we stress that the access of NGST to the thermal infrared would increase tremendously its scientific potential to study the early universe.
The XXL survey is the largest survey carried out by XMM-Newton. Covering an area of 50deg$^2$, the survey contains $sim450$ galaxy clusters out to a redshift $sim$2 and to an X-ray flux limit of $sim5times10^{-15}erg,s^{-1}cm^{-2}$. This paper is part of the first release of XXL results focussed on the bright cluster sample. We investigate the scaling relation between weak-lensing mass and X-ray temperature for the brightest clusters in XXL. The scaling relation is used to estimate the mass of all 100 clusters in XXL-100-GC. Based on a subsample of 38 objects that lie within the intersection of the northern XXL field and the publicly available CFHTLenS catalog, we derive the $M_{WL}$ of each system with careful considerations of the systematics. The clusters lie at $0.1<z<0.6$ and span a range of $ Tsimeq1-5keV$. We combine our sample with 58 clusters from the literature, increasing the range out to 10keV. To date, this is the largest sample of clusters with $M_{WL}$ measurements that has been used to study the mass-temperature relation. The fit ($Mpropto T^b$) to the XXL clusters returns a slope $b=1.78^{+0.37}_{-0.32}$ and intrinsic scatter $sigma_{ln M|T}simeq0.53$; the scatter is dominated by disturbed clusters. The fit to the combined sample of 96 clusters is in tension with self-similarity, $b=1.67pm0.12$ and $sigma_{ln M|T}simeq0.41$. Overall our results demonstrate the feasibility of ground-based weak-lensing scaling relation studies down to cool systems of $sim1keV$ temperature and highlight that the current data and samples are a limit to our statistical precision. As such we are unable to determine whether the validity of hydrostatic equilibrium is a function of halo mass. An enlarged sample of cool systems, deeper weak-lensing data, and robust modelling of the selection function will help to explore these issues further.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا