Do you want to publish a course? Click here

Spectral energy distribution of super-Eddington flows

247   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English
 Authors D. Heinzeller




Ask ChatGPT about the research

Spectral properties of super-Eddington accretion flows are investigated by means of a parallel line-of-sight calculation. The subjacent model, taken from two-dimensional radiation hydrodynamic simulations by Ohsuga et al. (2005), consists of a disc accretion region and an extended atmosphere with high velocity outflows. The non-gray radiative transfer equation is solved, including relativistic effects, by applying the FLD approximation. The calculated spectrum is composed of a thermal, blackbody-like emission from the disc which depends sensitively on the inclination angle, and of high energy X-ray and gamma-ray emission from the atmosphere. We find mild beaming effects in the thermal radiation for small inclination angles. If we compare the face-on case with the edge-on case, the average photon energy is larger by a factor of ~1.7 due mainly to Doppler boosting, while the photon number density is larger by a factor of ~3.7 due mainly to anisotropic matter distribution around the central black hole. This gives an explanation for the observed X-ray temperatures of ULXs which are too high to be explained in the framework of intermediate-mass black holes. While the main features of the thermal spectral component are consistent with more detailed calculations of slim accretion discs, the atmosphere induces major changes in the high-energy part, which cannot be reproduced by existing models. In order to interpret observational data properly, simple approaches like the Eddington-Barbier approximation cannot be applied.



rate research

Read More

350 - Aya Kubota 2019
We develop a broadband spectral model, agnsli}, to describe super-Eddington black hole accretion disc spectra. This is based on the slim disc emissivity, where radial advection keeps the surface luminosity at the local Eddington limit, resulting in L(r)~ r^{-2} rather than the r^{-3} expected from the Novikov-Thorne (standard, sub-Eddington) disc emissivity. Wind losses should also be important but these are expected to produce a similar radiative emissivity. We assume that the flow is radially stratified, with an outer standard disc, an inner hot Comptonising region and an intermediate warm Comptonising region to produce the soft X-ray excess. This gives the model enough flexibility to fit the observed data, but with the additional requirement of energy conservation to give physical constraints. We use this to fit the broadband spectrum of one of the most extreme Active Galactic Nuclei, the Narrow Line Seyfert 1 RX J0439.6-5311, which has a black hole mass of (6~9) times 10^6 solar mass as derived from the H_beta line width. This cannot be fit with the standard disc emissivity at this mass, as even zero spin models overproduce the observed luminosity. Instead, we show that the spectrum is well reproduced by the slim disc model, giving mass accretion rates around (5~10) times Eddington limit. There is no constraint on black hole spin as the efficiency is reduced by advection. Such extreme accretion rates should be characteristic of the first Quasars, and we demonstrate this by fitting to the spectrum of a recently discovered super-Eddington Quasar, PSO J006+39, at z=6.6.
412 - Ya. V. Pavlenko 2005
We present results of modelling the bulk of the spectral energy distribution (0.35 - 5 micron) for GJ406 (M6V). Synthetic spectra were calculated using the NextGen, Dusty and Cond model atmospheres and incorporate line lists for H2O, TiO, CrH, FeH, CO, MgH molecules as well as the VALD line list of atomic lines. A comparison of synthetic and observed spectra gives Tef = 2800 +/- 100 K. We determine M$_bol = 12.13 +/- 0.10 for which evolutionary models by Baraffe et al. (2003) suggest an age of around 0.1 -- 0.35 Gyr consistent with its high activity. The age and luminosity of GJ406 correspond to a wide range of plausible masses (0.07 -- 0.1 Msun).
The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested disks (MADs), where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodynamic (GRRMHD) simulation of a spinning BH (spin $a/M=0.8$) accreting at $sim 50$ times Eddington shows a total efficiency $sim 50%$ when time-averaged and total efficiency $gtrsim 100%$ in moments. Magnetic compression by the magnetic flux near the rotating BH leads to a thin disk, whose radiation escapes via advection by a magnetized wind and via transport through a low-density channel created by a Blandford-Znajek (BZ) jet. The BZ efficiency is sub-optimal due to inertial loading of field lines by optically thick radiation, leading to BZ efficiency $sim 40%$ on the horizon and BZ efficiency $sim 5%$ by $rsim 400r_g$ (gravitational radii) via absorption by the wind. Importantly, radiation escapes at $rsim 400r_g$ with efficiency $etaapprox 15%$ (luminosity $Lsim 50L_{rm Edd}$), similar to $etaapprox 12%$ for a Novikov-Thorne thin disk and beyond $etalesssim 1%$ seen in prior GRRMHD simulations or slim disk theory. Our simulations show how BH spin, magnetic field, and jet mass-loading affect the radiative and jet efficiencies of super-Eddington accretion.
Although we are nearing a consensus that most ULXs are stellar-mass black holes in a super-Eddington state, little is yet established of the physics of this accretion mode. Here, we use a combined X-ray spectral and timing analysis of a sample of ULXs to investigate this new accretion regime. We suggest a spectral classification scheme that separates ULXs into three classes: a broadened disc class, and two-component hard and soft ultraluminous regimes. At the lowest luminosities the ULX population is dominated by sources with broadened disc spectra, whilst two component spectra are seen at higher luminosities, suggestive of a distinction between ~ Eddington and super-Eddington accretion modes. We find high levels of variability are limited to ULXs with soft ultraluminous spectra, and a few broadened disc sources. Furthermore, the variability is strongest at high energies, suggesting it originates in the harder spectral component. These properties are consistent with current models of super-Eddington emission, where a wind forms a funnel around the central regions of the accretion flow. As the wind provides the soft component this suggests that inclination is the key determinant in the observed X-ray spectra, which is very strongly supported by the variability results if this originates due to clumpy material at the edge of the wind intermittently obscuring our line-of-sight to the central regions of the ULX. The pattern of spectral variability with luminosity in two ULXs that straddle the hard/soft ultraluminous regime boundary is consistent with the wind increasing at higher accretion rates, and thus narrowing the opening angle of the funnel. Hence, this work suggests that most ULXs can be explained as stellar-mass black holes accreting at and above the Eddington limit, with their observed characteristics dominated by two variables: accretion rate and inclination. (abridged)
(Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log $ u $ - Log $ u$ F$_ u$ representation, the typical broad-band spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SEDs to characterize the peak intensity of both the low and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broad-band colors (i.e. the radio to optical and optical to X-ray spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency $ u_p^S$ is positioned between 10$^{12.5}$ and 10$^{14.5}$ Hz in broad-lined FSRQs and between $10^{13}$ and $10^{17}$ Hz in featureless BL Lacertae objects.We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron - inverse Compton scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton (SSC) models cannot explain most of our SEDs, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. (...)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا