Do you want to publish a course? Click here

X-rays from Cataclysmic Variables

64   0   0.0 ( 0 )
 Added by Erik Kuulkers
 Publication date 2003
  fields Physics
and research's language is English
 Authors Erik Kuulkers




Ask ChatGPT about the research

Cataclysmic Variables are a distinct class of interacting binaries, transferring mass from a donor star to a degenerate accretor, a white dwarf. We here review X-ray observations of these systems, with some emphasis on what has been achieved in the last decade.



rate research

Read More

Among hard X-ray galactic sources detected by INTEGRAL and Swift surveys, those discovered as accreting white dwarfs have surprisingly boosted in number, representing 20% of the galactic sample. The majority are identified as magnetic cataclysmic variabiles of the intermediate polar type suggesting this subclass as an important constituent of galactic population of X-ray sources. In this conference-proceeding, we review the X-ray emission properties as observed with our ongoing XMM-Newton programme of newly discovered INTEGRAL and/or Swift sources that enlarged almost by a factor of two, identifying cataclysmic variabiles commonalities and outliers.
We measure the spatial distribution and hard X-ray luminosity function of cataclysmic variables (CVs) using the INTEGRAL all-sky survey in the 17-60 keV energy band. The vast majority of the INTEGRAL detected CVs are intermediate polars with luminosities in the range 10^{32}-10^{34} erg/sec. The scale height of the Galactic disk population of CVs is found to be 130{+90}{-50} pc. The CV luminosity function measured with INTEGRAL in hard X-rays is compatible with that previously determined at lower energies (3--20 keV) using a largely independent sample of sources detected by RXTE (located at |b|>10deg as opposed to the INTEGRAL sample, strongly concentrated to the Galactic plane). The cumulative 17-60 keV luminosity density of CVs per unit stellar mass is found to be (1.3+/-0.3)x10^{27} erg/sec/Msun and is thus comparable to that of low-mass X-ray binaries in this energy band. Therefore, faint but numerous CVs are expected to provide an important contribution to the cumulative hard X-ray emission of galaxies.
Among hard X-ray Galactic sources detected in the Swift and INTEGRAL surveys, those discovered as accreting white dwarf binaries have suprisingly boosted in number in the recent years. The majority are identified as magnetic Cataclysmic Variables of the Intermediate Polar type, suggesting this subclass as an important constituent of the Galactic population of X-ray sources. We here review and discuss the X-ray emission properties of newly discovered sources in the framework of an identification programme with the XMM-Newton satellite that increased the sample of this subclass by a factor of two.
We present a sample of eight cataclysmic variables (CVs) identified among the X-ray sources of the 400 square degree (400d) X-ray ROSAT/PSPC survey. Based on this sample, we have obtained preliminary constraints on the X-ray luminosity function of CVs in the solar neighbourhood in the range of low luminosities, L_X=~1e29-1e30 erg/s (0.5-2 keV). We show that the logarithmic slope of the CV luminosity function in this luminosity range is less steep than that at L_X>1e31 erg/s. Our results show that of order of thousand CVs will be detected in the SRG/eROSITA all-sky survey at high Galactic latitudes, which will allow to obtain much more accurate measurements of their X-ray luminosity function.
We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by Schreiber et al. (2016), who found that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction >~ 90% of the secondary at velocities ~500-1000 km/s within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity > 1e38 erg/s, similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ~300-5000 L_sun, effective temperature T_eff ~ 3000 K and lifetime ~1e4-1e5 yr. We predict that ~1e3-1e4 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا