Hubble Space Telescope Spectroscopy of V471 Tauri: Oversized K Star, Paradoxical White Dwarf


Abstract in English

We have used the GHRS onboard the HST to obtain Lyman-alpha spectra of the hot white-dwarf (WD) component of the short-period eclipsing DA+dK2 pre-cataclysmic binary V471 Tauri, a member of the Hyades star cluster. Radial velocities of the WD, combined with ground-based measurements of the dK velocities, eclipse timings, and a determination of the dK stars rotational velocity, yield dynamical masses for the components of M(WD)=0.84 and M(dK)=0.93 Msun. Model-atmosphere fitting of the Ly-alpha profile provides the effective temperature (34,500 K) and surface gravity (log g=8.3) of the WD. The radius of the dK component is 18% larger than that of a normal Hyades dwarf of the same mass. This expansion is attributed to the extensive coverage of the surface by starspots, causing the star to expand in response. The WD radius, determined from a radiometric analysis and from eclipse ingress timings, is 0.0107 Rsun. The position of the star in the M-R plane is in full accord with theory for a degenerate CO WD. The high temperature and mass of the WD present an evolutionary paradox: the WD is the most massive known in the Hyades, but also the hottest and youngest. We suggest that the explanation is that the WD is indeed very young, and is descended from a triple consisting of a blue straggler and a more-distant dK companion. We estimate that the common-envelope efficiency parameter, alpha_CE, was of order 0.3-1.0, in good agreement with recent hydrodynamical simulations.

Download