No Arabic abstract
Reasoning over commonsense knowledge bases (CSKB) whose elements are in the form of free-text is an important yet hard task in NLP. While CSKB completion only fills the missing links within the domain of the CSKB, CSKB population is alternatively proposed with the goal of reasoning unseen assertions from external resources. In this task, CSKBs are grounded to a large-scale eventuality (activity, state, and event) graph to discriminate whether novel triples from the eventuality graph are plausible or not. However, existing evaluations on the population task are either not accurate (automatic evaluation with randomly sampled negative examples) or of small scale (human annotation). In this paper, we benchmark the CSKB population task with a new large-scale dataset by first aligning four popular CSKBs, and then presenting a high-quality human-annotated evaluation set to probe neural models commonsense reasoning ability. We also propose a novel inductive commonsense reasoning model that reasons over graphs. Experimental results show that generalizing commonsense reasoning on unseen assertions is inherently a hard task. Models achieving high accuracy during training perform poorly on the evaluation set, with a large gap between human performance. We will make the data publicly available for future contributions. Codes and data are available at https://github.com/HKUST-KnowComp/CSKB-Population.
Most benchmark datasets targeting commonsense reasoning focus on everyday scenarios: physical knowledge like knowing that you could fill a cup under a waterfall [Talmor et al., 2019], social knowledge like bumping into someone is awkward [Sap et al., 2019], and other generic situations. However, there is a rich space of commonsense inferences anchored to knowledge about specific entities: for example, deciding the truthfulness of a claim Harry Potter can teach classes on how to fly on a broomstick. Can models learn to combine entity knowledge with commonsense reasoning in this fashion? We introduce CREAK, a testbed for commonsense reasoning about entity knowledge, bridging fact-checking about entities (Harry Potter is a wizard and is skilled at riding a broomstick) with commonsense inferences (if youre good at a skill you can teach others how to do it). Our dataset consists of 13k human-authored English claims about entities that are either true or false, in addition to a small contrast set. Crowdworkers can easily come up with these statements and human performance on the dataset is high (high 90s); we argue that models should be able to blend entity knowledge and commonsense reasoning to do well here. In our experiments, we focus on the closed-book setting and observe that a baseline model finetuned on existing fact verification benchmark struggles on CREAK. Training a model on CREAK improves accuracy by a substantial margin, but still falls short of human performance. Our benchmark provides a unique probe into natural language understanding models, testing both its ability to retrieve facts (e.g., who teaches at the University of Chicago?) and unstated commonsense knowledge (e.g., butlers do not yell at guests).
Commonsense knowledge is critical in human reading comprehension. While machine comprehension has made significant progress in recent years, the ability in handling commonsense knowledge remains limited. Synonyms are one of the most widely used commonsense knowledge. Constructing adversarial dataset is an important approach to find weak points of machine comprehension models and support the design of solutions. To investigate machine comprehension models ability in handling the commonsense knowledge, we created a Question and Answer Dataset with common knowledge of Synonyms (QADS). QADS are questions generated based on SQuAD 2.0 by applying commonsense knowledge of synonyms. The synonyms are extracted from WordNet. Words often have multiple meanings and synonyms. We used an enhanced Lesk algorithm to perform word sense disambiguation to identify synonyms for the context. ELECTRA achieves the state-of-art result on the SQuAD 2.0 dataset in 2019. With scale, ELECTRA can achieve similar performance as BERT does. However, QADS shows that ELECTRA has little ability to handle commonsense knowledge of synonyms. In our experiment, ELECTRA-small can achieve 70% accuracy on SQuAD 2.0, but only 20% on QADS. ELECTRA-large did not perform much better. Its accuracy on SQuAD 2.0 is 88% but dropped significantly to 26% on QADS. In our earlier experiments, BERT, although also failed badly on QADS, was not as bad as ELECTRA. The result shows that even top-performing NLP models have little ability to handle commonsense knowledge which is essential in reading comprehension.
A fundamental ability of humans is to utilize commonsense knowledge in language understanding and question answering. In recent years, many knowledge-enhanced Commonsense Question Answering (CQA) approaches have been proposed. However, it remains unclear: (1) How far can we get by exploiting external knowledge for CQA? (2) How much potential of knowledge has been exploited in current CQA models? (3) Which are the most promising directions for future CQA? To answer these questions, we benchmark knowledge-enhanced CQA by conducting extensive experiments on multiple standard CQA datasets using a simple and effective knowledge-to-text transformation framework. Experiments show that: (1) Our knowledge-to-text framework is effective and achieves state-of-the-art performance on CommonsenseQA dataset, providing a simple and strong knowledge-enhanced baseline for CQA; (2) The potential of knowledge is still far from being fully exploited in CQA -- there is a significant performance gap from current models to our models with golden knowledge; and (3) Context-sensitive knowledge selection, heterogeneous knowledge exploitation, and commonsense-rich language models are promising CQA directions.
Recent developments in pre-trained neural language modeling have led to leaps in accuracy on commonsense question-answering benchmarks. However, there is increasing concern that models overfit to specific tasks, without learning to utilize external knowledge or perform general semantic reasoning. In contrast, zero-shot evaluations have shown promise as a more robust measure of a models general reasoning abilities. In this paper, we propose a novel neuro-symbolic framework for zero-shot question answering across commonsense tasks. Guided by a set of hypotheses, the framework studies how to transform various pre-existing knowledge resources into a form that is most effective for pre-training models. We vary the set of language models, training regimes, knowledge sources, and data generation strategies, and measure their impact across tasks. Extending on prior work, we devise and compare four constrained distractor-sampling strategies. We provide empirical results across five commonsense question-answering tasks with data generated from five external knowledge resources. We show that, while an individual knowledge graph is better suited for specific tasks, a global knowledge graph brings consistent gains across different tasks. In addition, both preserving the structure of the task as well as generating fair and informative questions help language models learn more effectively.
Sentence order prediction is the task of finding the correct order of sentences in a randomly ordered document. Correctly ordering the sentences requires an understanding of coherence with respect to the chronological sequence of events described in the text. Document-level contextual understanding and commonsense knowledge centered around these events are often essential in uncovering this coherence and predicting the exact chronological order. In this paper, we introduce STaCK -- a framework based on graph neural networks and temporal commonsense knowledge to model global information and predict the relative order of sentences. Our graph network accumulates temporal evidence using knowledge of `past and `future and formulates sentence ordering as a constrained edge classification problem. We report results on five different datasets, and empirically show that the proposed method is naturally suitable for order prediction. The implementation of this work is publicly available at: https://github.com/declare-lab/sentence-ordering.