Do you want to publish a course? Click here

Different faces of confinement

161   0   0.0 ( 0 )
 Added by Roman Pasechnik
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this review, we provide a short outlook of some of the currently most popular pictures and promising approaches to non-perturbative physics and confinement in gauge theories. A qualitative and by no means exhaustive discussion presented here covers such key topics as the phases of QCD matter, the order parameters for confinement, the central vortex and monopole pictures of the QCD vacuum structure, fundamental properties of the string tension, confinement realisations in gauge-Higgs and Yang-Mills theories, magnetic order/disorder phase transition among others.



rate research

Read More

We investigate the confinement-deconfinement transition at finite temperature in terms of the probability distribution of Polyakov-loop complex-phase via the Jensen-Shannon divergence. The Jensen-Shannon divergence quantifies the difference of two probability distributions, namely the target and reference probability distributions. We adopt the complex-phase distributions of the spatially averaged Polyakov loop at $mu/T=0$ and $mu/T=ipi/3$ as the target and reference distributions, respectively. It is shown that the Jensen-Shannon divergence has the inflection point when the target system approaches the Roberge-Weiss endpoint temperature even in the finite-volume system. This means that we can detect the confinement-deconfinement transition from the structural change of probability distributions when we suitably set the reference probability distribution. It is also shown that we can pick up the information of the confinement-deconfinement transition from the quark number density by using the Fourier decomposition; Fourier coefficients have a long tail at around the transition temperature and show a divergent series in calculating the normalized kurtosis.
We relate quark confinement, as measured by the Polyakov-loop order parameter, to color confinement, as described by the Kugo-Ojima/Gribov-Zwanziger scenario. We identify a simple criterion for quark confinement based on the IR behaviour of ghost and gluon propagators, and compute the order-parameter potential from the knowledge of Landau-gauge correlation functions with the aid of the functional RG. Our approach predicts the deconfinement transition in quenched QCD to be of first order for SU(3) and second order for SU(2) -- in agreement with general expectations. As an estimate for the critical temperature, we obtain T_c=284MeV for SU(3).
The infrared behavior of the quark-gluon vertex of quenched Landau gauge QCD is studied by analyzing its Dyson-Schwinger equation. Building on previously obtained results for Green functions in the Yang-Mills sector we analytically derive the existence of power-law infrared singularities for this vertex. We establish that dynamical chiral symmetry breaking leads to the self-consistent generation of components of the quark-gluon vertex forbidden when chiral symmetry is forced to stay in the Wigner-Weyl mode. In the latter case the running strong coupling assumes an infrared fixed point. If chiral symmetry is broken, either dynamically or explicitely, the running coupling is infrared divergent. Based on a truncation for the quark-gluon vertex Dyson-Schwinger equation which respects the analytically determined infrared behavior numerical results for the coupled system of the quark propagator and vertex Dyson-Schwinger equation are presented. The resulting quark mass function as well as the vertex function show only a very weak dependence on the current quark mass in the deep infrared. From this we infer by an analysis of the quark-quark scattering kernel a linearly rising quark potential with an almost mass independent string tension in the case of broken chiral symmetry. Enforcing chiral symmetry does lead to a Coulomb type potential. Therefore we conclude that chiral symmetry breaking and confinement are closely related. Furthermore we discuss aspects of confinement as the absence of long-range van-der-Waals forces and Casimir scaling. An examination of experimental data for quarkonia provides further evidence for the viability of the presented mechanism for quark confinement in the Landau gauge.
108 - F. Lenz , J. W. Negele , M. Thies 2003
It is shown that an effective theory with meron degrees of freedom produces confinement in SU(2) Yang Mills theory. This effective theory is compatible with center symmetry. When the scale is set by the string tension, the action density and topological susceptibility are similar to those arising in lattice QCD.
337 - A. Bashir , A. Raya , I.C. Cloet 2008
We establish that QED3 can possess a critical number of flavours, N_f^c, associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalisation and photon vacuum polarisation are homogeneous functions at infrared momenta when the fermion mass function vanishes. The Ward identity entails that the fermion-photon vertex possesses the same property and ensures a simple relationship between the homogeneity degrees of each of these functions. Simple models for the photon vacuum polarisation and fermion-photon vertex are used to illustrate these observations. The existence and value of N_f^c are contingent upon the precise form of the vertex but any discussion of gauge dependence is moot. We introduce an order parameter for confinement. Chiral symmetry restoration and deconfinement are coincident owing to an abrupt change in the analytic properties of the fermion propagator when a nonzero scalar self-energy becomes insupportable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا