No Arabic abstract
Myopia is an eye condition that makes it difficult for people to focus on faraway objects. It has become one of the most serious eye conditions worldwide and negatively impacts the quality of life of those who suffer from it. Although myopia is prevalent, many non-myopic people have misconceptions about it and encounter challenges empathizing with myopia situations and those who suffer from it. In this research, we developed two virtual reality (VR) games, (1) Myopic Bike and (2) Say Hi, to provide a means for the non-myopic population to experience the frustration and difficulties of myopic people. Our two games simulate two inconvenient daily life scenarios (riding a bicycle and greeting someone on the street) that myopic people encounter when not wearing glasses. We evaluated four participants game experiences through questionnaires and semi-structured interviews. Overall, our two VR games can create an engaging and non-judgmental experience for the non-myopic population to better understand and empathize with those who suffer from myopia.
We consider settings in which we wish to incentivize myopic agents (such as Airbnb landlords, who may emphasize short-term profits and property safety) to treat arriving clients fairly, in order to prevent overall discrimination against individuals or groups. We model such settings in both classical and contextual bandit models in which the myopic agents maximize rewards according to current empirical averages, but are also amenable to exogenous payments that may cause them to alter their choices. Our notion of fairness asks that more qualified individuals are never (probabilistically) preferred over less qualified ones [Joseph et al]. We investigate whether it is possible to design inexpensive {subsidy} or payment schemes for a principal to motivate myopic agents to play fairly in all or almost all rounds. When the principal has full information about the state of the myopic agents, we show it is possible to induce fair play on every round with a subsidy scheme of total cost $o(T)$ (for the classic setting with $k$ arms, $tilde{O}(sqrt{k^3T})$, and for the $d$-dimensional linear contextual setting $tilde{O}(dsqrt{k^3 T})$). If the principal has much more limited information (as might often be the case for an external regulator or watchdog), and only observes the number of rounds in which members from each of the $k$ groups were selected, but not the empirical estimates maintained by the myopic agent, the design of such a scheme becomes more complex. We show both positive and negative results in the classic and linear bandit settings by upper and lower bounding the cost of fair subsidy schemes.
We consider an environment where players need to decide whether to buy a certain product (or adopt a technology) or not. The product is either good or bad but its true value is not known to the players. Instead, each player has her own private information on its quality. Each player can observe the previous actions of other players and estimate the quality of the product. A classic result in the literature shows that in similar settings information cascades occur where learning stops for the whole network and players repeat the actions of their predecessors. In contrast to the existing literature on informational cascades, in this work, players get more than one opportunity to act. In each turn, a player is chosen uniformly at random and can decide to buy the product and leave the market or to wait. We provide a characterization of structured perfect Bayesian equilibria (sPBE) with forward-looking strategies through a fixed-point equation of dimensionality that grows only quadratically with the number of players. In particular, a sufficient state for players strategies at each time instance is a pair of two integers, the first corresponding to the estimated quality of the good and the second indicating the number of players that cannot offer additional information about the good to the rest of the players. Based on this characterization we study informational cascades in two regimes. First, we show that for a discount factor strictly smaller than one, informational cascades happen with high probability as the number of players increases. Furthermore, only a small portion of the total information in the system is revealed before a cascade occurs. Secondly, and more surprisingly, we show that for a fixed number of players, as the discount factor approaches one, bad informational cascades are benign when the product is bad, and are completely eliminated when the discount factor equals one.
We address the issue of the effects of considering a network of contacts on the emergence of cooperation on social dilemmas under myopic best response dynamics. We begin by summarizing the main features observed under less intellectually demanding dynamics, pointing out their most relevant general characteristics. Subsequently we focus on the new framework of best response. By means of an extensive numerical simulation program we show that, contrary to the rest of dynamics considered so far, best response is largely unaffected by the underlying network, which implies that, in most cases, no promotion of cooperation is found with this dynamics. We do find, however, nontrivial results differing from the well-mixed population in the case of coordination games on lattices, which we explain in terms of the formation of spatial clusters and the conditions for their advancement, subsequently discussing their relevance to other networks.
The recent boom in computational chemistry has enabled several projects aimed at discovering useful materials or catalysts. We acknowledge and address two recurring issues in the field of computational catalyst discovery. First, calculating macro-scale catalyst properties is not straight-forward when using ensembles of atomic-scale calculations (e.g., density functional theory). We attempt to address this issue by creating a multiscale model that estimates bulk catalyst activity using adsorption energy predictions from both density functional theory and machine learning models. The second issue is that many catalyst discovery efforts seek to optimize catalyst properties, but optimization is an inherently exploitative objective that is in tension with the explorative nature of early-stage discovery projects. In other words: why invest so much time finding a best catalyst when it is likely to fail for some other, unforeseen problem? We address this issue by relaxing the catalyst discovery goal into a classification problem: What is the set of catalysts that is worth testing experimentally? Here we present a catalyst discovery method called myopic multiscale sampling, which combines multiscale modeling with automated selection of density functional theory calculations. It is an active classification strategy that seeks to classify catalysts as worth investigating or not worth investigating experimentally. Our results show a ~7-16 times speedup in catalyst classification relative to random sampling. These results were based on offline simulations of our algorithm on two different datasets: a larger, synthesized dataset and a smaller, real dataset.
Myopic is a hard real-time process scheduling algorithm that selects a suitable process based on a heuristic function from a subset (Window)of all ready processes instead of choosing from all available processes, like original heuristic scheduling algorithm. Performance of the algorithm significantly depends on the chosen heuristic function that assigns weight to different parameters like deadline, earliest starting time, processing time etc. and the sizeof the Window since it considers only k processes from n processes (where, k<= n). This research evaluates the performance of the Myopic algorithm for different parameters to demonstrate the merits and constraints of the algorithm. A comparative performance of the impact of window size in implementing the Myopic algorithm is presented and discussed through a set of experiments.