Consider Yudovich solutions to the incompressible Euler equations with bounded initial vorticity in bounded planar domains or in $mathbb{R}^2$. We present a purely Lagrangian proof that the solution map is strongly continuous in $L^p$ for all $pin [1, infty)$ and is weakly-$*$ continuous in $L^infty$.
We consider the incompressible 2D Euler equations on bounded spatial domain $S$, and study the solution map on the Sobolev spaces $H^k(S)$ ($k > 2$). Through an elaborate geometric construction, we show that for any $T >0$, the time $T$ solution map $u_0 mapsto u(T)$ is nowhere locally uniformly continuous and nowhere Frechet differentiable.
Through a simple and elegant argument, we prove that the norm of the derivative of the solution operator of Euler equations posed in the Sobolev space $H^n$, along any base solution that is in $H^n$ but not in $H^{n+1}$, is infinite. We also review the counterpart of this result for Navier-Stokes equations at high Reynolds number from the perspective of fully developed turbulence. Finally we present a few examples and numerical simulations to show a more complete picture of the so-called rough dependence upon initial data.
This paper addresses the construction and the stability of self-similar solutions to the isentropic compressible Euler equations. These solutions model a gas that implodes isotropically, ending in a singularity formation in finite time. The existence of smooth solutions that vanish at infinity and do not have vacuum regions was recently proved and, in this paper, we provide the first construction of such smooth profiles, the first characterization of their spectrum of radial perturbations as well as some endpoints of unstable directions. Numerical simulations of the Euler equations provide evidence that one of these endpoints is a shock formation that happens before the singularity at the origin, showing that the implosion process is unstable.
In the first part of this paper we establish a uniqueness result for continuity equations with velocity field whose derivative can be represented by a singular integral operator of an $L^1$ function, extending the Lagrangian theory in cite{BouchutCrippa13}. The proof is based on a combination of a stability estimate via optimal transport techniques developed in cite{Seis16a} and some tools from harmonic analysis introduced in cite{BouchutCrippa13}. In the second part of the paper, we address a question that arose in cite{FilhoMazzucatoNussenzveig06}, namely whether 2D Euler solutions obtained via vanishing viscosity are renormalized (in the sense of DiPerna and Lions) when the initial data has low integrability. We show that this is the case even when the initial vorticity is only in~$L^1$, extending the proof for the $L^p$ case in cite{CrippaSpirito15}.
Inspired by an approach proposed previously for the incompressible Navier-Stokes (NS) equations, we present a general framework for the a posteriori analysis of the equations of incompressible magnetohydrodynamics (MHD) on a torus of arbitrary dimension d; this setting involves a Sobolev space of infinite order, made of C^infinity vector fields (with vanishing divergence and mean) on the torus. Given any approximate solution of the MHD Cauchy problem, its a posteriori analysis with the method of the present work allows to infer a lower bound on the time of existence of the exact solution, and to bound from above the Sobolev distance of any order between the exact and the approximate solution. In certain cases the above mentioned lower bound on the time of existence is found to be infinite, so one infers the global existence of the exact MHD solution. We present some applications of this general scheme; the most sophisticated one lives in dimension d=3, with the ABC flow (perturbed magnetically) as an initial datum, and uses for the Cauchy problem a Galerkin approximate solution in 124 Fourier modes. We illustrate the conclusions arising in this case from the a posteriori analysis of the Galerkin approximant; these include the derivation of global existence of the exact MHD solution with the ABC datum, when the dimensionless viscosity and resistivity are equal and stay above an explicitly given threshold value.