Do you want to publish a course? Click here

Taming Self-Supervised Learning for Presentation Attack Detection: In-Image De-Folding and Out-of-Image De-Mixing

174   0   0.0 ( 0 )
 Added by Feng Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Biometric systems are vulnerable to the Presentation Attacks (PA) performed using various Presentation Attack Instruments (PAIs). Even though there are numerous Presentation Attack Detection (PAD) techniques based on both deep learning and hand-crafted features, the generalization of PAD for unknown PAI is still a challenging problem. The common problem with existing deep learning-based PAD techniques is that they may struggle with local optima, resulting in weak generalization against different PAs. In this work, we propose to use self-supervised learning to find a reasonable initialization against local trap, so as to improve the generalization ability in detecting PAs on the biometric system.The proposed method, denoted as IF-OM, is based on a global-local view coupled with De-Folding and De-Mixing to derive the task-specific representation for PAD.During De-Folding, the proposed technique will learn region-specific features to represent samples in a local pattern by explicitly maximizing cycle consistency. While, De-Mixing drives detectors to obtain the instance-specific features with global information for more comprehensive representation by maximizing topological consistency. Extensive experimental results show that the proposed method can achieve significant improvements in terms of both face and fingerprint PAD in more complicated and hybrid datasets, when compared with the state-of-the-art methods. Specifically, when training in CASIA-FASD and Idiap Replay-Attack, the proposed method can achieve 18.60% Equal Error Rate (EER) in OULU-NPU and MSU-MFSD, exceeding baseline performance by 9.54%. Code will be made publicly available.



rate research

Read More

For artificial learning systems, continual learning over time from a stream of data is essential. The burgeoning studies on supervised continual learning have achieved great progress, while the study of catastrophic forgetting in unsupervised learning is still blank. Among unsupervised learning methods, self-supervise learning method shows tremendous potential on visual representation without any labeled data at scale. To improve the visual representation of self-supervised learning, larger and more varied data is needed. In the real world, unlabeled data is generated at all times. This circumstance provides a huge advantage for the learning of the self-supervised method. However, in the current paradigm, packing previous data and current data together and training it again is a waste of time and resources. Thus, a continual self-supervised learning method is badly needed. In this paper, we make the first attempt to implement the continual contrastive self-supervised learning by proposing a rehearsal method, which keeps a few exemplars from the previous data. Instead of directly combining saved exemplars with the current data set for training, we leverage self-supervised knowledge distillation to transfer contrastive information among previous data to the current network by mimicking similarity score distribution inferred by the old network over a set of saved exemplars. Moreover, we build an extra sample queue to assist the network to distinguish between previous and current data and prevent mutual interference while learning their own feature representation. Experimental results show that our method performs well on CIFAR100 and ImageNet-Sub. Compared with the baselines, which learning tasks without taking any technique, we improve the image classification top-1 accuracy by 1.60% on CIFAR100, 2.86% on ImageNet-Sub and 1.29% on ImageNet-Full under 10 incremental steps setting.
Most advances in single image de-raining meet a key challenge, which is removing rain streaks with different scales and shapes while preserving image details. Existing single image de-raining approaches treat rain-streak removal as a process of pixel-wise regression directly. However, they are lacking in mining the balance between over-de-raining (e.g. removing texture details in rain-free regions) and under-de-raining (e.g. leaving rain streaks). In this paper, we firstly propose a coarse-to-fine network called Gradual Network (GraNet) consisting of coarse stage and fine stage for delving into single image de-raining with different granularities. Specifically, to reveal coarse-grained rain-streak characteristics (e.g. long and thick rain streaks/raindrops), we propose a coarse stage by utilizing local-global spatial dependencies via a local-global subnetwork composed of region-aware blocks. Taking the residual result (the coarse de-rained result) between the rainy image sample (i.e. the input data) and the output of coarse stage (i.e. the learnt rain mask) as input, the fine stage continues to de-rain by removing the fine-grained rain streaks (e.g. light rain streaks and water mist) to get a rain-free and well-reconstructed output image via a unified contextual merging sub-network with dense blocks and a merging block. Solid and comprehensive experiments on synthetic and real data demonstrate that our GraNet can significantly outperform the state-of-the-art methods by removing rain streaks with various densities, scales and shapes while keeping the image details of rain-free regions well-preserved.
Unsupervised learning has always been appealing to machine learning researchers and practitioners, allowing them to avoid an expensive and complicated process of labeling the data. However, unsupervised learning of complex data is challenging, and even the best approaches show much weaker performance than their supervised counterparts. Self-supervised deep learning has become a strong instrument for representation learning in computer vision. However, those methods have not been evaluated in a fully unsupervised setting. In this paper, we propose a simple scheme for unsupervised classification based on self-supervised representations. We evaluate the proposed approach with several recent self-supervised methods showing that it achieves competitive results for ImageNet classification (39% accuracy on ImageNet with 1000 clusters and 46% with overclustering). We suggest adding the unsupervised evaluation to a set of standard benchmarks for self-supervised learning. The code is available at https://github.com/Randl/kmeans_selfsuper
Recently introduced self-supervised methods for image representation learning provide on par or superior results to their fully supervised competitors, yet the corresponding efforts to explain the self-supervised approaches lag behind. Motivated by this observation, we introduce a novel visual probing framework for explaining the self-supervised models by leveraging probing tasks employed previously in natural language processing. The probing tasks require knowledge about semantic relationships between image parts. Hence, we propose a systematic approach to obtain analogs of natural language in vision, such as visual words, context, and taxonomy. Our proposal is grounded in Marrs computational theory of vision and concerns features like textures, shapes, and lines. We show the effectiveness and applicability of those analogs in the context of explaining self-supervised representations. Our key findings emphasize that relations between language and vision can serve as an effective yet intuitive tool for discovering how machine learning models work, independently of data modality. Our work opens a plethora of research pathways towards more explainable and transparent AI.
Deep learning has demonstrated significant improvements in medical image segmentation using a sufficiently large amount of training data with manual labels. Acquiring well-representative labels requires expert knowledge and exhaustive labors. In this paper, we aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels using a self-ensembling contrastive learning technique. To this end, we propose to train an encoder-decoder network at image-level with small amounts of labeled images, and more importantly, we learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images. This method strengthens intra-class compactness and inter-class separability, so as to get a better pixel classifier. Moreover, we devise a student encoder for online learning and an exponential moving average version of it, called teacher encoder, to improve the performance iteratively in a self-ensembling manner. To construct contrastive samples with unlabeled images, two sampling strategies that exploit structure similarity across medical images and utilize pseudo-labels for construction, termed region-aware and anatomical-aware contrastive sampling, are investigated. We conduct extensive experiments on an MRI and a CT segmentation dataset and demonstrate that in a limited label setting, the proposed method achieves state-of-the-art performance. Moreover, the anatomical-aware strategy that prepares contrastive samples on-the-fly using pseudo-labels realizes better contrastive regularization on feature representations.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا