Do you want to publish a course? Click here

Quantum Design for Advanced Qubits

117   0   0.0 ( 0 )
 Added by Chao-Yang Lu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Simulations of high-complexity quantum systems, which are intractable for classical computers, can be efficiently done with quantum computers. Similarly, the increasingly complex quantum electronic circuits themselves will also need efficient simulations on quantum computers, which in turn will be important in quantum-aided design for next-generation quantum processors. Here, we implement variational quantum eigensolvers to simulate a Josephson-junction-array quantum circuit, which leads to the discovery of a new type of high-performance qubit, plasonium. We fabricate this new qubit and demonstrate that it exhibits not only long coherence time and high gate fidelity, but also a shrinking physical size and larger anharmonicity than the transmon, which can offer a number of advantages for scaling up multi-qubit devices. Our work opens the way to designing advanced quantum processors using existing quantum computing resources.



rate research

Read More

Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents $I_mathrm{p}$. Here, we examine an alternative approach, using qubits with smaller $I_mathrm{p}$ and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small ($sim 50~mathrm{nA}$) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.
420 - Xiu-Hao Deng , Yong Hu , Lin Tian 2011
The quantum degeneracy point approach [D. Vion et al., Science 296, 886 (2002)] effectively protects superconducting qubits from low-frequency noise that couples with the qubits as transverse noise. However, low-frequency noise in superconducting qubits can originate from various mechanisms and can couple with the qubits either as transverse or as longitudinal noise. Here, we present a quantum circuit containing a universal quantum degeneracy point that protects an encoded qubit from arbitrary low-frequency noise. We further show that universal quantum logic gates can be performed on the encoded qubit with high gate fidelity. The proposed scheme is robust against small parameter spreads due to fabrication errors in the superconducting qubits.
228 - C. Grezes , Y. Kubo , B. Julsgaard 2015
This article reviews efforts to build a new type of quantum device, which combines an ensemble of electronic spins with long coherence times, and a small-scale superconducting quantum processor. The goal is to store over long times arbitrary qubit states in orthogonal collective modes of the spin-ensemble, and to retrieve them on-demand. We first present the protocol devised for such a multi-mode quantum memory. We then describe a series of experimental results using NV center spins in diamond, which demonstrate its main building blocks: the transfer of arbitrary quantum states from a qubit into the spin ensemble, and the multi-mode retrieval of classical microwave pulses down to the single-photon level with a Hahn-echo like sequence. A reset of the spin memory is implemented in-between two successive sequences using optical repumping of the spins.
The aim of this review is to provide quantum engineers with an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum circuits. Over the past twenty years, the field has matured from a predominantly basic research endeavor to one that increasingly explores the engineering of larger-scale superconducting quantum systems. Here, we review several foundational elements -- qubit design, noise properties, qubit control, and readout techniques -- developed during this period, bridging fundamental concepts in circuit quantum electrodynamics (cQED) and contemporary, state-of-the-art applications in gate-model quantum computation.
Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward we achieve teleportation in each attempt while obtaining an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا