Generative adversary network (GAN) generated high-realistic human faces have been used as profile images for fake social media accounts and are visually challenging to discern from real ones. In this work, we show that GAN-generated faces can be exposed via irregular pupil shapes. This phenomenon is caused by the lack of physiological constraints in the GAN models. We demonstrate that such artifacts exist widely in high-quality GAN-generated faces and further describe an automatic method to extract the pupils from two eyes and analysis their shapes for exposing the GAN-generated faces. Qualitative and quantitative evaluations of our method suggest its simplicity and effectiveness in distinguishing GAN-generated faces.