Nonlocal transport phenomena in Weyl metals beyond the mesoscopic scale


Abstract in English

Axion electrodynamics governs electromagnetic properties of Weyl metals. Although transmission and reflection measurements of light have been proposed to confirm the axion electrodynamics, there are still lack of theoretical proposals for macroscopic nonlocal transport phenomena in Weyl metals. In this paper, we present nonlocal transport phenomena in time reversal symmetry-broken (TRSB) Weyl metals. Solving the axion electrodynamics numerically, we show that such nonlocal transport phenomena arise from the negative longitudinal magneto-resistivity (NLMR), combined with the anomalous Hall effect (AHE) in the axion electrodynamics. Since this nonlocal transport occurs beyond the mesoscopic scale, we conclude that these nonlocal properties have nothing to do with Fermi arcs, regarded to be clear evidence of the axion electrodynamics in the bulk.

Download