Do you want to publish a course? Click here

A new rotating machinery fault diagnosis method based on the Time Series Transformer

349   0   0.0 ( 0 )
 Added by Yuhong Jin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Fault diagnosis of rotating machinery is an important engineering problem. In recent years, fault diagnosis methods based on the Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) have been mature, but Transformer has not been widely used in the field of fault diagnosis. To address these deficiencies, a new method based on the Time Series Transformer (TST) is proposed to recognize the fault mode of bearings. In this paper, our contributions include: Firstly, we designed a tokens sequences generation method which can handle data in 1D format, namely time series tokenizer. Then, the TST combining time series tokenizer and Transformer was introduced. Furthermore, the test results on the given dataset show that the proposed method has better fault identification capability than the traditional CNN and RNN models. Secondly, through the experiments, the effect of structural hyperparameters such as subsequence length and embedding dimension on fault diagnosis performance, computational complexity and parameters number of the TST is analyzed in detail. The influence laws of some hyperparameters are obtained. Finally, via t-Distributed Stochastic Neighbor Embedding (t-SNE) dimensionality reduction method, the feature vectors in the embedding space are visualized. On this basis, the working pattern of TST has been explained to a certain extent. Moreover, by analyzing the distribution form of the feature vectors, we find that compared with the traditional CNN and RNN models, the feature vectors extracted by the method in this paper show the best intra-class compactness and inter-class separability. These results further demonstrate the effectiveness of the proposed method.

rate research

Read More

146 - Jing Zhang , Jing Tian , Tao Wen 2019
Early and accurately detecting faults in rotating machinery is crucial for operation safety of the modern manufacturing system. In this paper, we proposed a novel Deep fault diagnosis (DFD) method for rotating machinery with scarce labeled samples. DFD tackles the challenging problem by transferring knowledge from shallow models, which is based on the idea that shallow models trained with different hand-crafted features can reveal the latent prior knowledge and diagnostic expertise and have good generalization ability even with scarce labeled samples. DFD can be divided into three phases. First, a spectrogram of the raw vibration signal is calculated by applying a Short-time Fourier transform (STFT). From those spectrograms, discriminative time-frequency domain features can be extracted and used to form a feature pool. Then, several candidate Support vector machine (SVM) models are trained with different combinations of features in the feature pool with scarce labeled samples. By evaluating the pretrained SVM models on the validation set, the most discriminative features and best-performed SVM models can be selected, which are used to make predictions on the unlabeled samples. The predicted labels reserve the expert knowledge originally carried by the SVM model. They are combined together with the scarce fine labeled samples to form an Augmented training set (ATS). Finally, a novel 2D deep Convolutional neural network (CNN) model is trained on the ATS to learn more discriminative features and a better classifier. Experimental results on two fault diagnosis datasets demonstrate the effectiveness of the proposed DFD, which achieves better performance than SVM models and the vanilla deep CNN model trained on scarce labeled samples. Moreover, it is computationally efficient and is promising for real-time rotating machinery fault diagnosis.
The scope of data-driven fault diagnosis models is greatly improved through deep learning (DL). However, the classical convolution and recurrent structure have their defects in computational efficiency and feature representation, while the latest Transformer architecture based on attention mechanism has not been applied in this field. To solve these problems, we propose a novel time-frequency Transformer (TFT) model inspired by the massive success of standard Transformer in sequence processing. Specially, we design a fresh tokenizer and encoder module to extract effective abstractions from the time-frequency representation (TFR) of vibration signals. On this basis, a new end-to-end fault diagnosis framework based on time-frequency Transformer is presented in this paper. Through the case studies on bearing experimental datasets, we constructed the optimal Transformer structure and verified the performance of the diagnostic method. The superiority of the proposed method is demonstrated in comparison with the benchmark model and other state-of-the-art methods.
104 - S.Q. Liu , Z.S. Ji , Y Wang 2018
Motor is the most widely used production equipment in industrial field. In order to realize the real-time state monitoring and multi-fault pre-diagnosis of three-phase motor, this paper presents a design of three-phase motor state monitoring and fault diagnosis system based on LabVIEW. The multi-dimensional vibration acceleration, rotational speed, temperature, current and voltage signals of the motor are collected with NI cDAQ acquisition equipment in real time and high speed. At the same time, the model of motor health state and fault state is established. The order analysis algorithm is used to analyze the data at an advanced level, and the diagnosis and classification of different fault types are realized. The system is equipped with multi-channel acquisition, display, analysis and storage. Combined with the current cloud transmission technology, we will back up the data to the cloud to be used by other terminals.
It is of great significance to identify the characteristics of time series to qualify their similarity. We define six types of triadic time-series motifs and investigate the motif occurrence profiles extracted from logistic map, chaotic logistic map, chaotic Henon map, chaotic Ikeda map, hyperchaotic generalized Henon map and hyperchaotic folded-tower map. Based on the similarity of motif profiles, we further propose to estimate the similarity coefficients between different time series and classify these time series with high accuracy. We further apply the motif analysis method to the UCR Time Series Classification Archive and provide evidence of good classification ability for some data sets. Our analysis shows that the proposed triadic time series motif analysis performs better than the classic dynamic time wrapping method in classifying time series for certain data sets investigated in this work.
90 - Li Shen , Yangzhu Wang 2021
Time series forecasting is essential for a wide range of real-world applications. Recent studies have shown the superiority of Transformer in dealing with such problems, especially long sequence time series input(LSTI) and long sequence time series forecasting(LSTF) problems. To improve the efficiency and enhance the locality of Transformer, these studies combine Transformer with CNN in varying degrees. However, their combinations are loosely-coupled and do not make full use of CNN. To address this issue, we propose the concept of tightly-coupled convolutional Transformer(TCCT) and three TCCT architectures which apply transformed CNN architectures into Transformer: (1) CSPAttention: through fusing CSPNet with self-attention mechanism, the computation cost of self-attention mechanism is reduced by 30% and the memory usage is reduced by 50% while achieving equivalent or beyond prediction accuracy. (2) Dilated causal convolution: this method is to modify the distilling operation proposed by Informer through replacing canonical convolutional layers with dilated causal convolutional layers to gain exponentially receptive field growth. (3) Passthrough mechanism: the application of passthrough mechanism to stack of self-attention blocks helps Transformer-like models get more fine-grained information with negligible extra computation costs. Our experiments on real-world datasets show that our TCCT architectures could greatly improve the performance of existing state-of-art Transformer models on time series forecasting with much lower computation and memory costs, including canonical Transformer, LogTrans and Informer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا