No Arabic abstract
Adaptive gradient methods such as Adam have gained increasing popularity in deep learning optimization. However, it has been observed that compared with (stochastic) gradient descent, Adam can converge to a different solution with a significantly worse test error in many deep learning applications such as image classification, even with a fine-tuned regularization. In this paper, we provide a theoretical explanation for this phenomenon: we show that in the nonconvex setting of learning over-parameterized two-layer convolutional neural networks starting from the same random initialization, for a class of data distributions (inspired from image data), Adam and gradient descent (GD) can converge to different global solutions of the training objective with provably different generalization errors, even with weight decay regularization. In contrast, we show that if the training objective is convex, and the weight decay regularization is employed, any optimization algorithms including Adam and GD will converge to the same solution if the training is successful. This suggests that the inferior generalization performance of Adam is fundamentally tied to the nonconvex landscape of deep learning optimization.
Deep reinforcement learning (RL) agents trained in a limited set of environments tend to suffer overfitting and fail to generalize to unseen testing environments. To improve their generalizability, data augmentation approaches (e.g. cutout and random convolution) are previously explored to increase the data diversity. However, we find these approaches only locally perturb the observations regardless of the training environments, showing limited effectiveness on enhancing the data diversity and the generalization performance. In this work, we introduce a simple approach, named mixreg, which trains agents on a mixture of observations from different training environments and imposes linearity constraints on the observation interpolations and the supervision (e.g. associated reward) interpolations. Mixreg increases the data diversity more effectively and helps learn smoother policies. We verify its effectiveness on improving generalization by conducting extensive experiments on the large-scale Procgen benchmark. Results show mixreg outperforms the well-established baselines on unseen testing environments by a large margin. Mixreg is simple, effective and general. It can be applied to both policy-based and value-based RL algorithms. Code is available at https://github.com/kaixin96/mixreg .
We study gradient-based regularization methods for neural networks. We mainly focus on two regularization methods: the total variation and the Tikhonov regularization. Applying these methods is equivalent to using neural networks to solve some partial differential equations, mostly in high dimensions in practical applications. In this work, we introduce a general framework to analyze the generalization error of regularized networks. The error estimate relies on two assumptions on the approximation error and the quadrature error. Moreover, we conduct some experiments on the image classification tasks to show that gradient-based methods can significantly improve the generalization ability and adversarial robustness of neural networks. A graphical extension of the gradient-based methods are also considered in the experiments.
Despite superior training outcomes, adaptive optimization methods such as Adam, Adagrad or RMSprop have been found to generalize poorly compared to Stochastic gradient descent (SGD). These methods tend to perform well in the initial portion of training but are outperformed by SGD at later stages of training. We investigate a hybrid strategy that begins training with an adaptive method and switches to SGD when appropriate. Concretely, we propose SWATS, a simple strategy which switches from Adam to SGD when a triggering condition is satisfied. The condition we propose relates to the projection of Adam steps on the gradient subspace. By design, the monitoring process for this condition adds very little overhead and does not increase the number of hyperparameters in the optimizer. We report experiments on several standard benchmarks such as: ResNet, SENet, DenseNet and PyramidNet for the CIFAR-10 and CIFAR-100 data sets, ResNet on the tiny-ImageNet data set and language modeling with recurrent networks on the PTB and WT2 data sets. The results show that our strategy is capable of closing the generalization gap between SGD and Adam on a majority of the tasks.
Despite existing work on ensuring generalization of neural networks in terms of scale sensitive complexity measures, such as norms, margin and sharpness, these complexity measures do not offer an explanation of why neural networks generalize better with over-parametrization. In this work we suggest a novel complexity measure based on unit-wise capacities resulting in a tighter generalization bound for two layer ReLU networks. Our capacity bound correlates with the behavior of test error with increasing network sizes, and could potentially explain the improvement in generalization with over-parametrization. We further present a matching lower bound for the Rademacher complexity that improves over previous capacity lower bounds for neural networks.
Residual Network (ResNet) is undoubtedly a milestone in deep learning. ResNet is equipped with shortcut connections between layers, and exhibits efficient training using simple first order algorithms. Despite of the great empirical success, the reason behind is far from being well understood. In this paper, we study a two-layer non-overlapping convolutional ResNet. Training such a network requires solving a non-convex optimization problem with a spurious local optimum. We show, however, that gradient descent combined with proper normalization, avoids being trapped by the spurious local optimum, and converges to a global optimum in polynomial time, when the weight of the first layer is initialized at 0, and that of the second layer is initialized arbitrarily in a ball. Numerical experiments are provided to support our theory.