No Arabic abstract
Experiments on the distributions of switching currents in Josephson junctions are sensitive probes of the mechanism by which a junction changes abruptly to a finite voltage state. At low temperatures data exhibit smooth and gradual deviations from the expectations of the classical theory of thermal activation over the barrier in the tilted washboard potential. In this paper it is shown that if a very small proportion of the noise energy entering the apparatus at room temperature survives filtering and reaches the sample, it can enhance the escape rate sufficiently to replicate experimental observations of the temperature dependence of the switching bias. This conjecture is successfully tested against published experimental data.
Swept bias experiments carried out on Josephson junctions yield the distributions of the probabilities of early switching from the zero voltage state. Kramers theory of thermally activated escape from a one-dimensional potential is well known to fall short of explaining such experiments when the junctions are at millikelvin temperatures. We propose a simple revision of the theory which is shown to yield extremely good agreement with experimental data.
Josephson junctions have broad applications in metrology, quantum information processing, and remote sensing. For these applications, the electronic noise is a limiting factor. In this work we study the thermal noise in narrow Josephson junctions using a tight-binding Hamiltonian. For a junction longer than the superconducting coherence length, several self-consistent gap profiles appear close to a phase difference $pi$. They correspond to two stable solutions with an approximately constant phase-gradient over the thin superconductor connected by a $2pi$ phase slip, and a solitonic branch. The current noise power spectrum has pronounced peaks at the transition frequencies between the different states in each branch. We find that the noise is reduced in the gradient branches in comparison to the zero-length junction limit. In contrast, the solitonic branch exhibits an enhanced noise and a reduced current due to the pinning of the lowest excitation energy to close to zero energy.
An experimental investigation of the critical current noise in underdamped niobium based Josephson junctions by a technique based on the switching current measurements is reported. By sweeping the junction with a current ramp we measure the critical current switching using the standard time of flight technique and analyze the data to extract the current noise. The experimental results show a linear behavior of the current white noise from both the junction area and the temperature. These measurement provide very useful information about the intrinsic noise of Josephson devices involving SQUIDs and qubits.
We have studied low-frequency resistance fluctuations in shadow-evaporated Al/AlOx/Al tunnel junctions. Between 300 K and 5 K the spectral density follows a 1/f-law. Below 5 K, individual defects distort the 1/f-shape of the spectrum. The spectral density decreases linearly with temperature between 150 K and 1 K and saturates below 0.8 K. At 4.2 K, the spectral density is about two orders of magnitude lower than expected from a recent survey [D. J. Van Harlingen et al., Phys. Rev. B 70, 064510 (2004)]. Due to the saturation below 0.8 K the estimated qubit dephasing times at 100 mK are only about two times longer than calculated by Van Harlingen et al.
The transient dynamics of long overlap Josephson junctions in the frame of the sine-Gordon model with a white noise source is investigated. The effect of noise delayed decay is observed for the case of overdamped sine-Gordon equation. It is shown that this noise induced effect, in the range of small noise intensities, vanishes for junctions lengths greater than several Josephson penetration length.