Do you want to publish a course? Click here

Muon number rescaling in simulations of air showers

84   0   0.0 ( 0 )
 Added by Dariusz Gora
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The number of muons in extensive air showers predicted using LHC-tuned hadronic interaction models, such as EPOS-LHC and QGSJetII-04, is smaller than observed in showers recorded by leading cosmic ray experiments. In this paper, we present a new method to derive muon rescaling factors by analyzing reconstructions of simulated showers. The z-variable used (difference of initially simulated and reconstructed total signal in detectors) is connected to the muon signal and is roughly independent of the zenith angle but depends on the mass of primary cosmic ray. The performance of the method is tested using Monte Carlo shower simulations for the hybrid detector of the Pierre Auger Observatory. Having an individual z-value from each simulated hybrid event, the corresponding signal at 1000 m from the shower axis, and using a parametrization of the muon fraction in simulated showers, we can calculate the multiplicative rescaling parameters of the muon signals in the ground detector even for an individual event. We can also study its dependence as a function of zenith angle and the mass of primary cosmic ray. This gives a possibility not only to test/calibrate the hadronic interaction models, but also to derive the $beta$-exponent, describing an increase of the number of muons as a function of primary energy and mass of the cosmic ray. Detailed simulations show dependence of the $beta$-exponent on hadronic interaction properties, thus the determination of this parameter is important for understanding the muon deficit problem.



rate research

Read More

CoREAS is a Monte Carlo simulation code for the calculation of radio emission from extensive air showers. It is based on the endpoint formalism for radiation from moving charges implemented directly in CORSIKA. Consequently, the full complexity of the air-shower physics is taken into account without the need for approximations or assumptions on the emission mechanism. We present results of simulations for an unthinned shower performed with CoREAS for both MHz and GHz frequencies. At MHz frequencies, the simulations predict the well-known mixture of geomagnetic and charge excess radiation. At GHz frequencies, the emission is strongly influenced by Cherenkov effects arising from the varying refractive index in the atmosphere. In addition, a qualitative difference in the symmetry of the GHz radiation pattern is observed when compared to the ones at lower frequencies. We also discuss the strong increase in the ground area subtended by the radio emission when going from near-vertical to very inclined geometries, making very inclined air showers the most promising ones for cosmic ray radio detection.
We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 pm 0.7 (stat) pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.
At ground level, the azimuthal distribution of muons in inclined Extensive Air Showers (EAS) is asymmetric, mainly due to geometric effects. Several EAS observables sensitive to the primary particle mass, are constructed after mapping the density of secondary particles from the ground plane to the shower plane (perpendicular to the shower axis). A simple orthogonal projection of the muon coordinates onto this plane distorts the azimuthal symmetry in the shower plane. Using CORSIKA simulations, we correct for this distortion by projecting each muon onto the normal plane following its incoming direction, taking also into account the attenuation probability. We show that besides restoring the azimuthal symmetry of muons density around the shower axis, the application of this procedure has a significant impact on the reconstruction of the distribution of the muon production depth and of its maximum, $X_{rm max}^{mu}$, which is an EAS observable sensitive to the primary particle mass. Our results qualitatively suggest that not including it in the reconstruction process of $X_{rm max}^{mu}$ may introduce a bias in the results obtained by analyzing the actual data on the basis of Monte Carlo simulations.
161 - S. Buitink , T. Huege , H. Falcke 2009
The development of cosmic ray air showers can be influenced by atmospheric electric fields. Under fair weather conditions these fields are small, but the strong fields inside thunderstorms can have a significant effect on the electromagnetic component of a shower. Understanding this effect is particularly important for radio detection of air showers, since the radio emission is produced by the shower electrons and positrons. We perform Monte Carlo simulations to calculate the effects of different electric field configurations on the shower development. We find that the electric field becomes important for values of the order of 1 kV/cm. Not only can the energy distribution of electrons and positrons change significantly for such field strengths, it is also possible that runaway electron breakdown occurs at high altitudes, which is an important effect in lightning initiation.
CoREAS is a Monte Carlo code for the simulation of radio emission from extensive air showers. It implements the endpoint formalism for the calculation of electromagnetic radiation directly in CORSIKA. As such, it is parameter-free, makes no assumptions on the emission mechanism for the radio signals, and takes into account the complete complexity of the electron and positron distributions as simulated by CORSIKA. In this article, we illustrate the capabilities of CoREAS with simulations carried out in different frequency ranges from tens of MHz up to GHz frequencies, and describe in particular the emission characteristics at high frequencies due to Cherenkov effects arising from the varying refractive index of the atmosphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا