Do you want to publish a course? Click here

The ASKAP Variables and Slow Transients (VAST) Pilot Survey

574   0   0.0 ( 0 )
 Added by Dougal Dobie
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 seconds to $sim 5$ years. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $sim 162$ hours of observations conducted at a central frequency of 888~MHz between 2019 August and 2020 August, with a typical rms sensitivity of 0.24~mJy~beam$^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, red{each of which was observed for 12 minutes integration time}, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5,131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1,646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039--5617. Another seven are stars, four of which have no previously reported radio detection (SCR~J0533--4257, LEHPM~2-783, UCAC3~89--412162 and 2MASS J22414436--6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multiwavelength counterparts and are yet to be identified.



rate research

Read More

The Australian Square Kilometre Array Pathfinder (ASKAP) will give us an unprecedented opportunity to investigate the transient sky at radio wavelengths. In this paper we present VAST, an ASKAP survey for Variables and Slow Transients. VAST will exploit the wide-field survey capabilities of ASKAP to enable the discovery and investigation of variable and transient phenomena from the local to the cosmological, including flare stars, intermittent pulsars, X-ray binaries, magnetars, extreme scattering events, interstellar scintillation, radio supernovae and orphan afterglows of gamma ray bursts. In addition, it will allow us to probe unexplored regions of parameter space where new classes of transient sources may be detected. In this paper we review the known radio transient and variable populations and the current results from blind radio surveys. We outline a comprehensive program based on a multi-tiered survey strategy to characterise the radio transient sky through detection and monitoring of transient and variable sources on the ASKAP imaging timescales of five seconds and greater. We also present an analysis of the expected source populations that we will be able to detect with VAST.
We are developing a purely commensal survey experiment for fast (<5s) transient radio sources. Short-timescale transients are associated with the most energetic and brightest single events in the Universe. Our objective is to cover the enormous volume of transients parameter space made available by ASKAP, with an unprecedented combination of sensitivity and field of view. Fast timescale transients open new vistas on the physics of high brightness temperature emission, extreme states of matter and the physics of strong gravitational fields. In addition, the detection of extragalactic objects affords us an entirely new and extremely sensitive probe on the huge reservoir of baryons present in the IGM. We outline here our approach to the considerable challenge involved in detecting fast transients, particularly the development of hardware fast enough to dedisperse and search the ASKAP data stream at or near real-time rates. Through CRAFT, ASKAP will provide the testbed of many of the key technologies and survey modes proposed for high time resolution science with the SKA.
We present a pilot search for variable and transient sources at 1.4 GHz with the Australian Square Kilometre Array Pathfinder (ASKAP). The search was performed in a 30 deg$^{2}$ area centred on the NGC 7232 galaxy group over 8 epochs and observed with a near-daily cadence. The search yielded nine potential variable sources, rejecting the null hypothesis that the flux densities of these sources do not change with 99.9% confidence. These nine sources displayed flux density variations with modulation indices m $geq 0.1$ above our flux density limit of 1.5 mJy. They are identified to be compact AGN/quasars or galaxies hosting an AGN, whose variability is consistent with refractive interstellar scintillation. We also detect a highly variable source with modulation index m $ > 0.5$ over a time interval of a decade between the Sydney University Molonglo Sky Survey (SUMSS) and our latest ASKAP observations. We find the source to be consistent with the properties of long-term variability of a quasar. No transients were detected on timescales of days and we place an upper limit $rho < 0.01$ deg$^{2}$ with 95% confidence for non-detections on near-daily timescales. The future VAST-Wide survey with 36-ASKAP dishes will probe the transient phase space with a similar cadence to our pilot survey, but better sensitivity, and will detect and monitor rarer brighter events.
We investigate the relation between the radio (F_r) and optical (F_o) flux densities of a variety of classes of radio transients and variables, with the aim of analysing whether this information can be used, in the future, to classify such events. Using flux density values between 1-10 GHz and the optical bands V and R, we build a sample with a total of 12,441 F_r and F_o measurements. The sample contains both Galactic objects, such as stellar sources and X-ray binaries, and extragalactic objects, such as gamma-ray bursts and quasars. By directly comparing the two parameters, it is already possible to distinguish between the Galactic and extragalactic populations. Although individual classes are harder to separate from the F_r-F_o parameter space to a high accuracy, and can only provide approximations, the basic approach provides an already useful foundation to develop a more accurate classification technique. In addition, we illustrate how example objects from different classes move in the parameter space as they evolve over time, offering a feature that could be used to reduce the confusion between classes. A small, blind test of the classification performance is also undertaken using a catalogue of FIRST transient and variable sources, to demonstrate the advantages and current limitations of the approach. With more multi-wavelength data becoming available in the future, we discuss other classification techniques which the F_r-F_o method could be combined with and potentially become an important part of an automatic radio transient classification system.
Phased Array Feed (PAF) receivers are at the forefront of modern day radio astronomy. PAFs are currently being developed for spectral line and radio continuum surveys and to search for pulsars and fast radio bursts. Here, we present results of the pilot survey for pulsars and fast radio bursts using the Focal plane L-band Array for the Green Bank Telescope (FLAG) receiver operating in the frequency range of 1.3--1.5 GHz. With a system temperature of $sim$18 K, the receiver provided unprecedented sensitivity to the survey over an instantaneous field of view (FoV) of 0.1 deg$^{2}$. For the survey, we implemented both time and frequency domain search pipelines designed to find pulsars and fast radio bursts that were validated by test pulsar observations. Although no new sources were found, we were able to demonstrate the capability of this instrument from observations of known pulsars. We report an upper limit on the rate of fast radio bursts above a fluence of 0.36~Jy ms to be 1.3 $times$ 10$^6$ events per day per sky. Using population simulations, we show that the FLAG will find a factor of 2--3 more pulsars in same survey duration compared to its single pixel counterpart at the Green Bank Telescope. We also demonstrate that the new phased array receiver, ALPACA for the Arecibo telescope, will be a superior survey instrument and will find pulsars at a higher rate than most contemporary receivers by a factor of 2--10.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا