No Arabic abstract
True to their unconventional nature, multi-band alkaline Fe-selenides and, more recently, the heavy-fermion CeCu$_{2}$Si$_{2}$ have shown signatures of fully-gapped but sign-changing superconductivity (SC). A two-orbital pairing state, called $stau_{3}$, with non-trivial matrix structure, was proposed as a candidate able to reconcile the seemingly contradictory properties of these SCs. Motivated by the non-trivial orbital structure of the proposed $stau_{3}$ state, which has orbital-selective pairing structure, we study prototypical Josephson junctions where at least one of the leads is in a SC state of this kind. An analysis of these junctions in the limit of two degenerate orbitals (bands) and with a simple form of junction hybridization reveals several remarkable properties. One is the emergence of gapless, purely electron- and hole-like bound states for $stau_{3}-N-stau_{3}$ junctions with arbitrary global phase difference between the leads, and likewise for $stau_{3}-N-I$ junctions. The other is the absence of static Josephson currents when both leads are SCs. In both of these signatures, $stau_{3}$ junctions are dramatically different from conventional Josephson junctions. We also find that the gapless bound states are protected by an orbital-exchange symmetry, although the protection is not topological. Junctions which break this symmetry, such as $stau_{3}-N-s$, have gapped Andreev bound states. In general, the Josephson effect also re-emerges once the degeneracy of the two orbitals is lifted. We support these conclusions via analytical and numerical results for the bound states, together with microscopic calculations of the Josephson current. Our results indicate that junctions involving $stau_{3}$ pairing in alkaline Fe-selenidess will generically have bound states with a small gap together with a greatly suppressed Josephson current.
In iron selenide superconductors only electron-like Fermi pockets survive, challenging the $S^{pm}$ pairing based on the quasi-nesting between the electron and hole Fermi pockets (as in iron arsenides). By functional renormalization group study we show that an in-phase $S$-wave pairing on the electron pockets ($S^{++}_{ee}$) is realized. The pairing mechanism involves two competing driving forces: The strong C-type spin fluctuations cause attractive pair scattering between and within electron pockets via Cooperon excitations on the virtual hole pockets, while the G-type spin fluctuations cause repulsive pair scattering. The latter effect is however weakened by the hybridization splitting of the electron pockets. The resulting $S^{++}_{ee}$-wave pairing symmetry is consistent with experiments. We further propose that the quasiparticle interference pattern in scanning tunneling microscopy and the Andreev reflection in out-of-plane contact tunneling are efficient probes of in-phase versus anti-phase $S$-wave pairing on the electron pockets.
We theoretically study the effect of a magnetic field on quasicrystalline superconductors, by modelling them as the attractive Hubbard model on the Penrose-tiling structure. We find that at low temperatures and under a high magnetic field there appears an exotic superconducting state with the order parameter changing its sign in real space. We discuss the state in comparison with the Fulde-Ferrell-Larkin-Ovchinnikov state proposed many years ago for periodic systems, clarifying commonalities and differences. It is remarkable that, even in the absence of periodicity, the electronic system finds a way to keep a coherent superconducting state with a spatially sign-changing order parameter compatible with the underlying quasiperiodic structure.
We study the influence of multiple bands on the properties of Josephson junctions. In particular we focus on the two gap superconductor magnesium diboride. We present a formalism to describe tunneling at a point contact between two MgB2 electrodes generalizing the transfer-matrix approach to multiple bands. A simple model is presented to determine the effective hopping amplitudes between the different energy bands as a function of the misorientation angle of the electrodes. We calculate the critical current and the current-voltage characteristics for N-I-S and S-I-S contacts with different orientation for junctions with both high and low transparency. We find that interband tunneling processes become increasingly important with increasing misorientation angle. This is reflected in certain features in the differential tunneling conductance in both the tunneling limit as well as for multiple Andreev reflections.
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmically flow towards the same values at low energies, {it i.e.}, antiferromagnetism and superconductivity must be treated on equal footings. The magnetic instability comes first for equal sizes of the two pockets, but looses to superconductivity upon doping. The superconducting gap has no nodes, but changes sign between the two Fermi surfaces (extended s-wave symmetry). We argue that the $T$ dependencies of the spin susceptibility and NMR relaxation rate for such state are exponential only at very low $T$, and can be well fitted by power-laws over a wide $T$ range below $T_c$.
We present theory of dc Josephson effect in contacts between Fe-based and spin-singlet $s$-wave superconductors. The method is based on the calculation of temperature Greens function in the junction within the tight-binding model. We calculate the phase dependencies of the Josephson current for different orientations of the junction relative to the crystallographic axes of Fe-based superconductor. Further, we consider the dependence of the Josephson current on the thickness of an insulating layer and on temperature. Experimental data for PbIn/Ba$_{1-x}$K$_{x}$(FeAs)$_2$ point-contact Josephson junctions are consistent with theoretical predictions for $s_{pm}$ symmetry of an order parameter in this material. The proposed method can be further applied to calculations of the dc Josephson current in contacts with other new unconventional multiorbital superconductors, such as $Sr_2RuO_4$ and superconducting topological insulator $Cu_xBi_2Se_3$.