A tight local algorithm for the minimum dominating set problem in outerplanar graphs


Abstract in English

We show that there is a deterministic local algorithm (constant-time distributed graph algorithm) that finds a 5-approximation of a minimum dominating set on outerplanar graphs. We show there is no such algorithm that finds a $(5-varepsilon)$-approximation, for any $varepsilon>0$. Our algorithm only requires knowledge of the degree of a vertex and of its neighbors, so that large messages and unique identifiers are not needed.

Download