Do you want to publish a course? Click here

Combining physics-based modeling and deep learning for ultrasound elastography

69   0   0.0 ( 0 )
 Added by Narges Mohammadi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Ultrasound elasticity images which enable the visualization of quantitative maps of tissue stiffness can be reconstructed by solving an inverse problem. Classical model-based approaches for ultrasound elastography use deterministic finite element methods (FEMs) to incorporate the governing physical laws resulting in poor performance in noisy conditions. Moreover, these approaches utilize fixed regularizers for various tissue patterns while appropriate data-adaptive priors might be required for capturing the complex spatial elasticity distribution. In this regard, we propose a joint model-based and learning-based framework for estimating the elasticity distribution by solving a regularized optimization problem. We present an integrated objective function composed of a statistical physics-based forward model and a data-driven regularizer to leverage deep neural networks for learning the underlying elasticity prior. This constrained optimization problem is solved using the gradient descent (GD) method and the gradient of regularizer is simply replaced by the residual of the trained denoiser network for having an explicit objective function with reduced computation time.



rate research

Read More

It is known that changes in the mechanical properties of tissues are associated with the onset and progression of certain diseases. Ultrasound elastography is a technique to characterize tissue stiffness using ultrasound imaging either by measuring tissue strain using quasi-static elastography or natural organ pulsation elastography, or by tracing a propagated shear wave induced by a source or a natural vibration using dynamic elastography. In recent years, deep learning has begun to emerge in ultrasound elastography research. In this review, several common deep learning frameworks in the computer vision community, such as multilayer perceptron, convolutional neural network, and recurrent neural network are described. Then, recent advances in ultrasound elastography using such deep learning techniques are revisited in terms of algorithm development and clinical diagnosis. Finally, the current challenges and future developments of deep learning in ultrasound elastography are prospected.
Ultrasound elastography is used to estimate the mechanical properties of the tissue by monitoring its response to an internal or external force. Different levels of deformation are obtained from different tissue types depending on their mechanical properties, where stiffer tissues deform less. Given two radio frequency (RF) frames collected before and after some deformation, we estimate displacement and strain images by comparing the RF frames. The quality of the strain image is dependent on the type of motion that occurs during deformation. In-plane axial motion results in high-quality strain images, whereas out-of-plane motion results in low-quality strain images. In this paper, we introduce a new method using a convolutional neural network (CNN) to determine the suitability of a pair of RF frames for elastography in only 5.4 ms. Our method could also be used to automatically choose the best pair of RF frames, yielding a high-quality strain image. The CNN was trained on 3,818 pairs of RF frames, while testing was done on 986 new unseen pairs, achieving an accuracy of more than 91%. The RF frames were collected from both phantom and in vivo data.
Ultrasound elastography is an emerging noninvasive imaging technique wherein pathological alterations can be visualized by revealing the mechanical properties of the tissue. Estimating tissue displacement in all directions is required to accurately estimate the mechanical properties. Despite capabilities of elastography techniques in estimating displacement in both axial and lateral directions, estimation of axial displacement is more accurate than lateral direction due to higher sampling frequency, higher resolution and having a carrier signal propagating in the axial direction. Among different ultrasound imaging techniques, Synthetic Aperture (SA) has better lateral resolution than others, but it is not commonly used for ultrasound elastography due to its limitation in imaging depth of field. Virtual source synthetic aperture (VSSA) imaging is a technique to implement synthetic aperture beamforming on the focused transmitted data to overcome limitation of SA in depth of field while maintaining the same lateral resolution as SA. Besides lateral resolution, VSSA has the capability of increasing sampling frequency in the lateral direction without interpolation. In this paper, we utilize VSSA to perform beamforming to enable higher resolution and sampling frequency in the lateral direction. The beamformed data is then processed using our recently published elastography technique, OVERWIND [1]. Simulation and experimental results show substantial improvement in estimation of lateral displacements.
Convolutional Neural Networks (CNN) have been found to have great potential in optical flow problems thanks to an abundance of data available for training a deep network. The displacement estimation step in UltraSound Elastography (USE) can be viewed as an optical flow problem. Despite the high performance of CNNs in optical flow, they have been rarely used for USE due to unique challenges that both input and output of USE networks impose. Ultrasound data has much higher high-frequency content compared to natural images. The outputs are also drastically different, where displacement values in USE are often smooth without sharp motions or discontinuities. The general trend is currently to use pre-trained networks and fine-tune them on a small simulation ultrasound database. However, realistic ultrasound simulation is computationally expensive. Also, the simulation techniques do not model complex motions, nonlinear and frequency-dependent acoustics, and many sources of artifact in ultrasound imaging. Herein, we propose an unsupervised fine-tuning technique which enables us to employ a large unlabeled dataset for fine-tuning of a CNN optical flow network. We show that the proposed unsupervised fine-tuning method substantially improves the performance of the network and reduces the artifacts generated by networks trained on computer vision databases.
Enhancing the visibility in extreme low-light environments is a challenging task. Under nearly lightless condition, existing image denoising methods could easily break down due to significantly low SNR. In this paper, we systematically study the noise statistics in the imaging pipeline of CMOS photosensors, and formulate a comprehensive noise model that can accurately characterize the real noise structures. Our novel model considers the noise sources caused by digital camera electronics which are largely overlooked by existing methods yet have significant influence on raw measurement in the dark. It provides a way to decouple the intricate noise structure into different statistical distributions with physical interpretations. Moreover, our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms. In this regard, although promising results have been shown recently with deep convolutional neural networks, the success heavily depends on abundant noisy clean image pairs for training, which are tremendously difficult to obtain in practice. Generalizing their trained models to images from new devices is also problematic. Extensive experiments on multiple low-light denoising datasets -- including a newly collected one in this work covering various devices -- show that a deep neural network trained with our proposed noise formation model can reach surprisingly-high accuracy. The results are on par with or sometimes even outperform training with paired real data, opening a new door to real-world extreme low-light photography.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا