Do you want to publish a course? Click here

Restricted Boltzmann Machine and Deep Belief Network: Tutorial and Survey

165   0   0.0 ( 0 )
 Added by Benyamin Ghojogh
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This is a tutorial and survey paper on Boltzmann Machine (BM), Restricted Boltzmann Machine (RBM), and Deep Belief Network (DBN). We start with the required background on probabilistic graphical models, Markov random field, Gibbs sampling, statistical physics, Ising model, and the Hopfield network. Then, we introduce the structures of BM and RBM. The conditional distributions of visible and hidden variables, Gibbs sampling in RBM for generating variables, training BM and RBM by maximum likelihood estimation, and contrastive divergence are explained. Then, we discuss different possible discrete and continuous distributions for the variables. We introduce conditional RBM and how it is trained. Finally, we explain deep belief network as a stack of RBM models. This paper on Boltzmann machines can be useful in various fields including data science, statistics, neural computation, and statistical physics.



rate research

Read More

Symbolic regression is a powerful technique that can discover analytical equations that describe data, which can lead to explainable models and generalizability outside of the training data set. In contrast, neural networks have achieved amazing levels of accuracy on image recognition and natural language processing tasks, but are often seen as black-box models that are difficult to interpret and typically extrapolate poorly. Here we use a neural network-based architecture for symbolic regression called the Equation Learner (EQL) network and integrate it with other deep learning architectures such that the whole system can be trained end-to-end through backpropagation. To demonstrate the power of such systems, we study their performance on several substantially different tasks. First, we show that the neural network can perform symbolic regression and learn the form of several functions. Next, we present an MNIST arithmetic task where a separate part of the neural network extracts the digits. Finally, we demonstrate prediction of dynamical systems where an unknown parameter is extracted through an encoder. We find that the EQL-based architecture can extrapolate quite well outside of the training data set compared to a standard neural network-based architecture, paving the way for deep learning to be applied in scientific exploration and discovery.
112 - Guido Montufar 2018
The restricted Boltzmann machine is a network of stochastic units with undirected interactions between pairs of visible and hidden units. This model was popularized as a building block of deep learning architectures and has continued to play an important role in applied and theoretical machine learning. Restricted Boltzmann machines carry a rich structure, with connections to geometry, applied algebra, probability, statistics, machine learning, and other areas. The analysis of these models is attractive in its own right and also as a platform to combine and generalize mathematical tools for graphical models with hidden variables. This article gives an introduction to the mathematical analysis of restricted Boltzmann machines, reviews recent results on the geometry of the sets of probability distributions representable by these models, and suggests a few directions for further investigation.
Restricted Boltzmann Machine (RBM) is an energy based, undirected graphical model. It is commonly used for unsupervised and supervised machine learning. Typically, RBM is trained using contrastive divergence (CD). However, training with CD is slow and does not estimate exact gradient of log-likelihood cost function. In this work, the model expectation of gradient learning for RBM has been calculated using a quantum annealer (D-Wave 2000Q), which is much faster than Markov chain Monte Carlo (MCMC) used in CD. Training and classification results are compared with CD. The classification accuracy results indicate similar performance of both methods. Image reconstruction as well as log-likelihood calculations are used to compare the performance of quantum and classical algorithms for RBM training. It is shown that the samples obtained from quantum annealer can be used to train a RBM on a 64-bit `bars and stripes data set with classification performance similar to a RBM trained with CD. Though training based on CD showed improved learning performance, training using a quantum annealer eliminates computationally expensive MCMC steps of CD.
We propose a novel quantum model for the restricted Boltzmann machine (RBM), in which the visible units remain classical whereas the hidden units are quantized as noninteracting fermions. The free motion of the fermions is parametrically coupled to the classical signal of the visible units. This model possesses a quantum behaviour such as coherences between the hidden units. Numerical experiments show that this fact makes it more powerful than the classical RBM with the same number of hidden units. At the same time, a significant advantage of the proposed model over the other approaches to the Quantum Boltzmann Machine (QBM) is that it is exactly solvable and efficiently trainable on a classical computer: there is a closed expression for the log-likelihood gradient with respect to its parameters. This fact makes it interesting not only as a model of a hypothetical quantum simulator, but also as a quantum-inspired classical machine-learning algorithm.
Approximate Message Passing (AMP) has been shown to be an excellent statistical approach to signal inference and compressed sensing problem. The AMP framework provides modularity in the choice of signal prior; here we propose a hierarchical form of the Gauss-Bernouilli prior which utilizes a Restricted Boltzmann Machine (RBM) trained on the signal support to push reconstruction performance beyond that of simple iid priors for signals whose support can be well represented by a trained binary RBM. We present and analyze two methods of RBM factorization and demonstrate how these affect signal reconstruction performance within our proposed algorithm. Finally, using the MNIST handwritten digit dataset, we show experimentally that using an RBM allows AMP to approach oracle-support performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا