Do you want to publish a course? Click here

Full NLO predictions for vector-boson scattering into Z bosons and its irreducible background at the LHC

112   0   0.0 ( 0 )
 Added by Ansgar Denner
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Vector-boson scattering into two Z bosons at the LHC is a key channel for the exploration of the electroweak sector of the Standard Model. It allows for the full reconstruction of the scattering process but at the price of a huge irreducible background. For the first time, we present full next-to-leading-order predictions for $pp to e^+e^-mu^+mu^-jj+X$ including all electroweak and QCD contributions for vector-boson scattering signal and irreducible background. The results are presented in the form of cross sections and differential distributions. A particular emphasis is put on the newly computed $O(alpha_s^2 alpha^5)$ corrections.



rate research

Read More

We present the first calculation of the full next-to-leading-order electroweak and QCD corrections for vector-boson scattering (VBS) into a pair of Z bosons at the LHC. We consider specifically the process ${rm ppto e^{+}e^{-}mu^{+}mu^{-}jj}+X$ at orders $mathcal{O}(alpha^7)$ and $mathcal{O}(alpha_salpha^6)$ and take all off-shell and interference contributions into account. Owing to the presence of enhanced Sudakov logarithms, the electroweak corrections amount to $-16%$ of the leading-order electroweak fiducial cross section and induce significant shape distortions of differential distributions. The QCD corrections on the other hand are larger ($+24%$) than typical QCD corrections in VBS. This originates from considering the full computation including tri-boson contributions in a rather inclusive phase space. We also provide a leading-order analysis of all contributions to the cross section for ${rm pp to e^{+}e^{-}mu^{+}mu^{-}jj}+X$ in a realistic setup.
Unitarization models describe phenomenologically the high energy behaviour of a strongly interacting symmetry breaking sector. In this work, predictions of some unitarized models in vector boson scattering at LHC are studied and compared with analogous studies in Equivalent Vector Boson Approximation and previous results for the benchmark no-Higgs scenario. To perform such studies, unitarized model amplitudes have been implemented in the PHANTOM Monte Carlo in a complete calculation with six fermions in the final state.
Vector-boson scattering (VBS) processes probe the innermost structure of electroweak interactions in the Standard Model, and provide a unique sensitivity for new physics phenomena affecting the gauge sector. In this review, we report on the salient aspects of this class of processes, both from the theory and experimental point of view. We start by discussing recent achievements relevant for their theoretical description, some of which have set important milestones in improving the precision and accuracy of the corresponding simulations. We continue by covering the development of experimental techniques aimed at detecting these rare processes and improving the signal sensitivity over large backgrounds. We then summarise the details of the most relevant VBS signatures and review the related measurements available to date, along with their comparison with Standard-Model predictions. We conclude by discussing the perspective at the upcoming Large Hadron Collider runs and at future hadron facilities.
The angular distributions of lepton pairs in the Drell-Yan process can provide rich information on the underlying QCD production mechanisms. These dynamics can be parameterised in terms of a set of frame dependent angular coefficients, $A_{i=0,ldots,7}$, which depend on the invariant mass, transverse momentum, and rapidity of the lepton pair. Motivated by recent measurements of these coefficients by ATLAS and CMS, and in particular by the apparent violation of the Lam-Tung relation $A_0-A_2=0$, we perform a precision study of the angular coefficients at $mathcal{O}(alpha_s^3)$ in perturbative QCD. We make predictions relevant for $pp$ collisions at $sqrt{s} = 8$ TeV, and perform comparisons with the available ATLAS and CMS data as well as providing predictions for a prospective measurement at LHCb. To expose the violation of the Lam-Tung relationship we propose a new observable $Delta^mathrm{LT} = 1-A_2/A_0$ that is more sensitive to the dynamics in the region where $A_0$ and $A_2$ are both small. We find that the $mathcal{O}(alpha_s^3)$ corrections have an important impact on the $p_{T,Z}$ distributions for several of the angular coefficients, and are essential to provide an adequate description of the data. The compatibility of the available ATLAS and CMS data is reassessed by performing a partial $chi^2$ test with respect to the central theoretical prediction which shows that $chi^2/N_mathrm{data}$ is significantly reduced by going from $mathcal{O}(alpha_s^2)$ to $mathcal{O}(alpha_s^3)$.
Accessing the polarization of weak bosons provides an important probe for the mechanism of electroweak symmetry breaking. Relying on the double-pole approximation and on the separation of polarizations at the amplitude level, we study WZ production at the LHC, with both bosons in a definite polarization mode, including NLO QCD effects. We compare results obtained defining the polarization vectors in two different frames. Integrated and differential cross-sections in a realistic fiducial region are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا