No Arabic abstract
Modelling the near-wall region of wall-bounded turbulent flows is a widespread practice to reduce the computational cost of large-eddy simulations (LESs) at high Reynolds number. As a first step towards a data-driven wall-model, a neural-network-based approach to predict the near-wall behaviour in a turbulent open channel flow is investigated. The fully-convolutional network (FCN) proposed by Guastoni et al. [preprint, arXiv:2006.12483] is trained to predict the two-dimensional velocity-fluctuation fields at $y^{+}_{rm target}$, using the sampled fluctuations in wall-parallel planes located farther from the wall, at $y^{+}_{rm input}$. The data for training and testing is obtained from a direct numerical simulation (DNS) at friction Reynolds numbers $Re_{tau} = 180$ and $550$. The turbulent velocity-fluctuation fields are sampled at various wall-normal locations, i.e. $y^{+} = {15, 30, 50, 80, 100, 120, 150}$. At $Re_{tau}=550$, the FCN can take advantage of the self-similarity in the logarithmic region of the flow and predict the velocity-fluctuation fields at $y^{+} = 50$ using the velocity-fluctuation fields at $y^{+} = 100$ as input with less than 20% error in prediction of streamwise-fluctuations intensity. These results are an encouraging starting point to develop a neural-network based approach for modelling turbulence at the wall in numerical simulations.
A new velocity scale is derived that yields a Reynolds number independent profile for the streamwise turbulent fluctuations in the near-wall region of wall bounded flows for $y^+<25$. The scaling demonstrates the important role played by the wall shear stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence distribution.
There exists continuous demand of improved turbulence models for the closure of Reynolds Averaged Navier-Stokes (RANS) simulations. Machine Learning (ML) offers effective tools for establishing advanced empirical Reynolds stress closures on the basis of high fidelity simulation data. This paper presents a turbulence model based on the Deep Neural Network(DNN) which takes into account the non-linear relationship between the Reynolds stress anisotropy tensor and the local mean velocity gradient as well as the near-wall effect. The construction and the tuning of the DNN-turbulence model are detailed. We show that the DNN-turbulence model trained on data from direct numerical simulations yields an accurate prediction of the Reynolds stresses for plane channel flow. In particular, we propose including the local turbulence Reynolds number in the model input.
A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows, including channel, pipe and boundary layer flows. The scaling demonstrates the important role played by the wall shear stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence behavior.
A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows. The scaling demonstrates the important role played by the wall shear stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence behavior.
Near-wall blood flow and wall shear stress (WSS) regulate major forms of cardiovascular disease, yet they are challenging to quantify with high fidelity. Patient-specific computational and experimental measurement of WSS suffers from uncertainty, low resolution, and noise issues. Physics-informed neural networks (PINN) provide a flexible deep learning framework to integrate mathematical equations governing blood flow with measurement data. By leveraging knowledge about the governing equations (herein, Navier-Stokes), PINN overcomes the large data requirement in deep learning. In this study, it was shown how PINN could be used to improve WSS quantification in diseased arterial flows. Specifically, blood flow problems where the inlet and outlet boundary conditions were not known were solved by assimilating very few measurement points. Uncertainty in boundary conditions is a common feature in patient-specific computational fluid dynamics models. It was shown that PINN could use sparse velocity measurements away from the wall to quantify WSS with very high accuracy even without full knowledge of the boundary conditions. Examples in idealized stenosis and aneurysm models were considered demonstrating how partial knowledge about the flow physics could be combined with partial measurements to obtain accurate near-wall blood flow data. The proposed hybrid data-driven and physics-based deep learning framework has high potential in transforming high-fidelity near-wall hemodynamics modeling in cardiovascular disease.