Intersection Problems in Extremal Combinatorics: Theorems, Techniques and Questions Old and New


Abstract in English

The study of intersection problems in Extremal Combinatorics dates back perhaps to 1938, when Paul ErdH{o}s, Chao Ko and Richard Rado proved the (first) `ErdH{o}s-Ko-Rado theorem on the maximum possible size of an intersecting family of $k$-element subsets of a finite set. Since then, a plethora of results of a similar flavour have been proved, for a range of different mathematical structures, using a wide variety of different methods. Structures studied in this context have included families of vector subspaces, families of graphs, subsets of finite groups with given group actions, and of course uniform hypergraphs with stronger or weaker intersection conditions imposed. The methods used have included purely combinatorial ones such as shifting/compressions, algebraic methods (including linear-algebraic, Fourier analytic and representation-theoretic), and more recently, analytic, probabilistic and regularity-type methods. As well as being natural problems in their own right, intersection problems have connections with many other parts of Combinatorics and with Theoretical Computer Science (and indeed with many other parts of Mathematics), both through the results themselves, and the methods used. In this survey paper, we discuss both old and new results (and both old and new methods), in the field of intersection problems. Many interesting open problems remain; we will discuss several. For expositional and pedagogical purposes, we also take this opportunity to give slightly streamlin

Download