Do you want to publish a course? Click here

Searching for ultralight bosons with supermassive black hole ringdown

272   0   0.0 ( 0 )
 Added by Adrian Ka-Wai Chung
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ultralight boson is a promising candidate for dark matter. These bosons may form long-lived bosonic clouds surrounding rotating black holes via superradiance, acting as sources of gravity and affecting the propagation of gravitational waves around the host black hole. If the mass ratio of a compact merger is sufficiently small, the bosonic cloud will survive the inspiral phase of a binary merger and can affect the quasinormal-mode frequencies of the perturbed black hole and bosonic cloud system. In this work, we compute the shift of gravitational QNMFs of a rotating black hole due to the presence of a surrounding bosonic cloud. We then perform a mock analysis on simulated LISA observational data containing injected ringdown signals from supermassive black holes with and without a bosonic cloud. We find that with less than an hour of observational data of the ringdown phase of nearby supermassive black holes such as Sagittarius A* and M32, we can rule out or confirm the existence of cloud-forming ultralight bosons of mass $ sim 10^{-17} rm eV$.



rate research

Read More

Ultralight bosons can form clouds around rotating black holes if their Compton wavelength is comparable to the black hole size. The boson cloud spins down the black hole through a process called superradiance, lowering the black hole spin to a characteristic value. It has been suggested that spin measurements of the black holes detected by ground-based gravitational-wave detectors can be used to constrain the mass of ultralight bosons. Unfortunately, a measurement of the individual black hole spins is often uncertain, resulting in inconclusive results. Instead, we use hierarchical Bayesian inference to combine information from multiple gravitational-wave sources and obtain stronger constraints. We show that hundreds of high signal-to-noise ratio gravitational-wave detections are enough to exclude (confirm) the existence of non-interacting bosons in the mass range $left[10^{-13},3times 10^{-12}right]~rm{eV}$ $left([10^{-13},10^{-12}]~rm{eV}right)$. The precise number depends on the distribution of black hole spins at formation and the mass of the boson. From the few uninformative spin measurements of binary black hole mergers detected by LIGO and Virgo in their first two observing runs, we cannot draw statistically significant conclusions.
We study the gravitational-wave (GW) signatures of clouds of ultralight bosons around black holes (BHs) in binary inspirals. These clouds, which are formed via superradiance instabilities for rapidly rotating BHs, produce distinct effects in the population of BH masses and spins, and a continuous monochromatic GW signal. We show that the presence of a binary companion greatly enriches the dynamical evolution of the system, most remarkably through the existence of resonant transitions between the growing and decaying modes of the cloud (analogous to Rabi oscillations in atomic physics). These resonances have rich phenomenological implications for current and future GW detectors. Notably, the amplitude of the GW signal from the clouds may be reduced, and in many cases terminated, much before the binary merger. The presence of a boson cloud can also be revealed in the GW signal from the binary through the imprint of finite-size effects, such as spin-induced multipole moments and tidal Love numbers. The time dependence of the clouds energy density during the resonance leads to a sharp feature, or at least attenuation, in the contribution from the finite-size terms to the waveforms. The observation of these effects would constrain the properties of putative ultralight bosons through precision GW data, offering new probes of physics beyond the Standard Model.
Clouds of ultralight bosons - such as axions - can form around a rapidly spinning black hole, if the black hole radius is comparable to the bosons wavelength. The cloud rapidly extracts angular momentum from the black hole, and reduces it to a characteristic value that depends on the bosons mass as well as on the black hole mass and spin. Therefore, a measurement of a black hole mass and spin can be used to reveal or exclude the existence of such bosons. Using the black holes released by LIGO and Virgo in their GWTC-2, we perform a simultaneous measurement of the black hole spin distribution at formation and the mass of the scalar boson. We find that the data strongly disfavors the existence of scalar bosons in the mass range between $1.3times10^{-13}~mathrm{eV}$ and $2.7times10^{-13}~mathrm{eV}$ for a decay constant $f_agtrsim 10^{14}~mathrm{GeV}$. The statistical evidence is mostly driven by the two {binary black holes} systems GW190412 and GW190517, which host rapidly spinning black holes. The region where bosons are excluded narrows down if these two systems merged shortly ($sim 10^5$ years) after the black holes formed.
Ultralight bosons can be abundantly produced through superradiance process by a spinning black hole and form a bound state with hydrogen-like spectrum. We show that such a gravitational atom typically possesses anomalously large mass quadrupole and leads to significant orbital precession when it forms an eccentric binary with a second compact object. Dynamically formed black hole binaries or pulsar-black hole binaries are typically eccentric during their early inspirals. We show that the large orbital precession can generate distinct and observable signature in their gravitational wave or pulsar timing signals.
Gravitational waves may be one of the few direct observables produced by ultralight bosons, conjectured dark matter candidates that could be the key to several problems in particle theory, high-energy physics and cosmology. These axionlike particles could spontaneously form clouds around astrophysical black holes, leading to potent emission of continuous gravitational waves that could be detected by instruments on the ground and in space. Although this scenario has been thoroughly studied, it has not been yet appreciated that both types of detector may be used in tandem (a practice known as multibanding). In this paper, we show that future gravitational-wave detectors on the ground and in space will be able to work together to detect ultralight bosons with masses $25 lesssim mu/left(10^{-15}, mathrm{eV}right)lesssim 500$. In detecting binary-black-hole inspirals, the LISA space mission will provide crucial information enabling future ground-based detectors, like Cosmic Explorer or Einstein Telescope, to search for signals from boson clouds around the individual black holes in the observed binaries. We lay out the detection strategy and, focusing on scalar bosons, chart the suitable parameter space. We study the impact of ignorance about the systems history, including cloud age and black hole spin. We also consider the tidal resonances that may destroy the boson cloud before its gravitational signal becomes detectable by a ground-based follow-up. Finally, we show how to take all of these factors into account, together with uncertainties in the LISA measurement, to obtain boson mass constraints from the ground-based observation facilitated by LISA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا