Do you want to publish a course? Click here

Symmetric Finite-Time Preparation of Cluster States via Quantum Pumps

70   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has recently been established that cluster-like states -- states that are in the same symmetry-protected topological phase as the cluster state -- provide a family of resource states that can be utilized for Measurement-Based Quantum Computation. In this work, we ask whether it is possible to prepare cluster-like states in finite time without breaking the symmetry protecting the resource state. Such a symmetry-preserving protocol would benefit from topological protection to errors in the preparation. We answer this question in the positive by providing a Hamiltonian in one higher dimension whose finite-time evolution is a unitary that acts trivially in the bulk, but pumps the desired cluster state to the boundary. Examples are given for both the 1D cluster state protected by a global symmetry, and various 2D cluster states protected by subsystem symmetries. We show that even if unwanted symmetric perturbations are present in the driving Hamiltonian, projective measurements in the bulk along with post-selection is sufficient to recover a cluster-like state. For a resource state of size $N$, failure to prepare the state is negligible if the size of the perturbations are much smaller than $N^{-1/2}$.



rate research

Read More

103 - Zhihuang Luo , Jun Li , Zhaokai Li 2016
Topological orders are a class of exotic states of matter characterized by patterns of long-range entanglement. Certain topologically ordered systems are proposed as potential realization of fault-tolerant quantum computation. Topological orders can arise in two-dimensional spin-lattice models. In this paper, we engineer a time-dependent Hamiltonian to prepare a topologically ordered state through adiabatic evolution. The other sectors in the degenerate ground-state space of the model are obtained by applying nontrivial operations corresponding to closed string operators. Each sector is highly entangled, as shown from the completely reconstructed density matrices. This paves the way towards exploring the properties of topological orders and the application of topological orders in topological quantum memory.
Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraph) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.
The preparation of thermal equilibrium states is important for the simulation of condensed-matter and cosmology systems using a quantum computer. We present a method to prepare such mixed states with unitary operators, and demonstrate this technique experimentally using a gate-based quantum processor. Our method targets the generation of thermofield double states using a hybrid quantum-classical variational approach motivated by quantum-approximate optimization algorithms, without prior calculation of optimal variational parameters by numerical simulation. The fidelity of generated states to the thermal-equilibrium state smoothly varies from 99 to 75% between infinite and near-zero simulated temperature, in quantitative agreement with numerical simulations of the noisy quantum processor with error parameters drawn from experiment.
In this paper we propose an approach to prepare GHZ states of an arbitrary multi-particle system in terms of Grovers fast quantum searching algorithm. This approach can be regarded as an extension of the Grovers algorithm to find one or more items in an unsorted database.
Cluster expansions for the exponential of local operators are constructed using tensor networks. In contrast to other approaches, the cluster expansion does not break any spatial or internal symmetries and exhibits a very favourable prefactor to the error scaling versus bond dimension. This is illustrated by time evolving a matrix product state using very large time steps, and by constructing a novel robust algorithm for finding ground states of 2-dimensional Hamiltonians using projected entangled pair states as fixed points of 2-dimensional transfer matrices.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا