Do you want to publish a course? Click here

Topological edge states of Kekule-type photonic crystals induced by a synchronized rotation of unit cells

142   0   0.0 ( 0 )
 Added by Yangji\\'e Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Generating and manipulating Dirac points in artificial atomic crystals has received attention especially in photonic systems due to their ease of implementation. In this paper, we propose a two-dimensional photonic crystal made of a Kekule lattice of pure dielectrics, where the internal rotation of cylindrical pillars induces optical Dirac-degeneracy breaking. Our calculated dispersion reveals that the synchronized rotation reverses bands and switches parity as well so as to induce a topological phase transition. Our simulation demonstrates that such topologically protected edge states can achieve robust transmission in defect waveguides under deformation, and therefore provides a pragmatically tunable scheme to achieve reconfigurable topological phases.



rate research

Read More

We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycomb sublattices, giving rise to a boron nitride-like band structure. The edge states therefore exist along the domain walls between regions of opposite valley Chern numbers. We probe both the armchair and zig-zag domain walls and show that the former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of time-reversal invariant photonic topological insulators.
Quadrupole topological phases, exhibiting protected boundary states that are themselves topological insulators of lower dimensions, have recently been of great interest. Extensions of these ideas from current tight binding models to continuum theories for realistic materials require the identification of quantized invariants describing the bulk quadrupole order. Here we identify the analog of quadrupole order in Maxwells equations for a photonic crystal (PhC) and identify quadrupole topological photonic crystals formed through a band inversion process. Unlike prior studies relying on threaded flux, our quadrupole moment is quantized purely by crystalline symmetries, which we confirm using three independent methods: analysis of symmetry eigenvalues, numerical calculations of the nested Wannier bands, and the expectation value of the quadrupole operator. Furthermore, through the bulk-edge correspondence of Wannier bands, we reveal the boundary manifestations of nontrivial quadrupole phases as quantized polarizations at edges and bound states at corners. Finally, we relate the nontrivial corner states to the emergent phenomena of quantized fractional corner charges and a filling anomaly as first predicted in electronic systems. Our work paves the way to further explore higher-order topological phases in nanophotonic systems and our method of inducing quadrupole phase transitions is also applicable to other wave systems, such as electrons, phonons and polaritons.
122 - Xiao-Chen Sun , Xiao Hu 2019
We clarify theoretically that the topological ring-cavity (TRC) modes propagating along the interface between two honeycomb-type photonic crystals distinct in topology can be exploited for achieving stable single-mode lasing, with the maximal intensity larger than a whispering-gallery-mode counterpart by order of magnitude. Especially, we show that the TRC modes located at the bulk bandgap center benefit maximally from the gain profile since they are most concentrated and uniform along the ring cavity, and that, inheriting from the Dirac-like dispersion of topological interface states, they are separated in frequency from each other and from other photonic modes, both favoring intrinsically single-mode lasing. A TRC mode running in a specific direction with desired orbital angular momentum can be stimulated selectively by injecting circularly polarized light. The TRC laser proposed in the present work can be fabricated by means of advanced semiconductor nanotechnologies, which generates chiral laser beams ideal for novel photonic functions.
In this paper, the photonic quantum spin Hall effect (PQSHE) is realized in dielectric two-dimensional (2D) honeycomb lattice photonic crystal (PC) by stretching and shrinking the honeycomb unit cell. Combining two honeycomb lattice PCs with a common photonic band gap (PBG) but different band topologies can generate a topologically protected edge state at the combined junction. The topological edge states and their unidirectional transmission as the scatterers with triangular, pentagonal, and heptagonal shapes are researched. Meanwhile, the unidirectional transmission in an inverted {Omega}-shaped waveguide with large bending angle is realized, and verifies the characteristics of the topological protection by adding different kind of defects. Moreover, the frequency varies significantly when changing the scatterers shape, which shows that the PC with various scatterers shape can tune the frequency range of the topological edge state significantly. In other words, it can adjust the frequency of unidirectional transmission and increase the adjustability of the topological edge state.
Crystal-symmetry-protected photonic topological edge states (PTESs) based on air rods in conventional dielectric materials are designed as photonic topological waveguides (PTWs) coupled with side optical cavities. We demonstrate that the cavity coupled with the PTW can change the reflection-free transport of the PTESs, where the cavities with single mode and twofold degenerate modes are taken as examples. The single-mode cavities are able to perfectly reflect the PTESs at their resonant frequencies, forming a dip in the transmission spectra. The dip full width at half depth depends on the coupling strength between the cavity and PTW and thus on the cavity geometry and distance relative to the PTW. While the cavities with twofold degenerate modes lead to a more complex PTES transport whose transmission spectra can be in the Fano form. These effects well agree with the one-dimensional PTW-cavity transport theory we build, in which the coupling of the PTW with cavity is taken as $delta$ or non-$delta$ type. Such PTWs coupled with side cavities, combining topological properties and convenient tunability, have wide diversities for topological photonic devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا