Do you want to publish a course? Click here

WiCluster: Passive Indoor 2D/3D Positioning using WiFi without Precise Labels

89   0   0.0 ( 0 )
 Added by Ilia Karmanov
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We introduce WiCluster, a new machine learning (ML) approach for passive indoor positioning using radio frequency (RF) channel state information (CSI). WiCluster can predict both a zone-level position and a precise 2D or 3D position, without using any precise position labels during training. Prior CSI-based indoor positioning work has relied on non-parametric approaches using digital signal-processing (DSP) and, more recently, parametric approaches (e.g., fully supervised ML methods). However these do not handle the complexity of real-world environments well and do not meet requirements for large-scale commercial deployments: the accuracy of DSP-based method deteriorates significantly in non-line-of-sight conditions, while supervised ML methods need large amounts of hard-to-acquire centimeter accuracy position labels. In contrast, WiCluster is both precise and requires weaker label-information that can be easily collected. Our first contribution is a novel dimensionality reduction method for charting. It combines a triplet-loss with a multi-scale clustering-loss to map the high-dimensional CSI representation to a 2D/3D latent space. Our second contribution is two weakly supervised losses that map this latent space into a Cartesian map, resulting in meter-accuracy position results. These losses only require simple to acquire priors: a sketch of the floorplan, approximate location of access-point locations and a few CSI packets that are labeled with the corresponding zone in the floorplan. Thirdly, we report results and a robustness study for 2D positioning in a single-floor office building and 3D positioning in a two-floor home to show the robustness of our method.



rate research

Read More

Widespread adoption of indoor positioning systems based on WiFi fingerprinting is at present hindered by the large efforts required for measurements collection during the offline phase. Two approaches were recently proposed to address such issue: crowdsourcing and RSS radiomap prediction, based on either interpolation or propagation channel model fitting from a small set of measurements. RSS prediction promises better positioning accuracy when compared to crowdsourcing, but no systematic analysis of the impact of system parameters on positioning accuracy is available. This paper fills this gap by introducing ViFi, an indoor positioning system that relies on RSS prediction based on Multi-Wall Multi-Floor (MWMF) propagation model to generate a discrete RSS radiomap (virtual fingerprints). Extensive experimental results, obtained in multiple independent testbeds, show that ViFi outperforms virtual fingerprinting systems adopting simpler propagation models in terms of accuracy, and allows a sevenfold reduction in the number of measurements to be collected, while achieving the same accuracy of a traditional fingerprinting system deployed in the same environment. Finally, a set of guidelines for the implementation of ViFi in a generic environment, that saves the effort of collecting additional measurements for system testing and fine tuning, is proposed.
Device-free human tracking is an essential ingredient for ubiquitous wireless sensing. Recent passive WiFi tracking systems face the challenges of inaccurate separation of dynamic human components and time-consuming estimation of multi-dimensional signal parameters. In this work, we present a scheme named WiFi Doppler Frequency Shift (WiDFS), which can achieve single-target real-time passive tracking using channel state information (CSI) collected from commercial-off-the-shelf (COTS) WiFi devices. We consider the typical system setup including a transmitter with a single antenna and a receiver with three antennas; while our scheme can be readily extended to another setup. To remove the impact of transceiver asynchronization, we first apply CSI cross-correlation between each RX antenna pair. We then combine them to estimate a Doppler frequency shift (DFS) in a short-time window. After that, we leverage the DFS estimate to separate dynamic human components from CSI self-correlation terms of each antenna, thereby separately calculating angle-of-arrival (AoA) and human reflection distance for tracking. In addition, a hardware calibration algorithm is presented to refine the spacing between RX antennas and eliminate the hardware-related phase differences between them. A prototype demonstrates that WiDFS can achieve real-time tracking with a median position error of 72.32 cm in multipath-rich environments.
Modeling human mobility has a wide range of applications from urban planning to simulations of disease spread. It is well known that humans spend 80% of their time indoors but modeling indoor human mobility is challenging due to three main reasons: (i) the absence of easily acquirable, reliable, low-cost indoor mobility datasets, (ii) high prediction space in modeling the frequent indoor mobility, and (iii) multi-scalar periodicity and correlations in mobility. To deal with all these challenges, we propose WiFiMod, a Transformer-based, data-driven approach that models indoor human mobility at multiple spatial scales using WiFi system logs. WiFiMod takes as input enterprise WiFi system logs to extract human mobility trajectories from smartphone digital traces. Next, for each extracted trajectory, we identify the mobility features at multiple spatial scales, macro, and micro, to design a multi-modal embedding Transformer that predicts user mobility for several hours to an entire day across multiple spatial granularities. Multi-modal embedding captures the mobility periodicity and correlations across various scales while Transformers capture long-term mobility dependencies boosting model prediction performance. This approach significantly reduces the prediction space by first predicting macro mobility, then modeling indoor scale mobility, micro-mobility, conditioned on the estimated macro mobility distribution, thereby using the topological constraint of the macro-scale. Experimental results show that WiFiMod achieves a prediction accuracy of at least 10% points higher than the current state-of-art models. Additionally, we present 3 real-world applications of WiFiMod - (i) predict high-density hot pockets for policy-making decisions for COVID19 or ILI, (ii) generate a realistic simulation of indoor mobility, (iii) design personal assistants.
Recently, round-trip time (RTT) measured by a fine-timing measurement protocol has received great attention in the area of WiFi positioning. It provides an acceptable ranging accuracy in favorable environments when a line-of-sight (LOS) path exists. Otherwise, a signal is detoured along with non-LOS paths, making the resultant ranging results different from the ground-truth, called an RTT bias, which is the main reason for poor positioning performance. To address it, we aim at leveraging the user mobility trajectory detected by a smartphones inertial measurement units, called pedestrian dead reckoning (PDR). Specifically, PDR provides the geographic relation among adjacent locations, guiding the resultant positioning estimates sequence not to deviate from the user trajectory. To this end, we describe their relations as multiple geometric equations, enabling us to render a novel positioning algorithm with acceptable accuracy. Depending on the mobility pattern being linear or arbitrary, we develop different algorithms divided into two phases. First, we can jointly estimate an RTT bias of each AP and the users step length by leveraging the geometric relation mentioned above. It enables us to construct a users relative trajectory defined on the concerned APs local coordinate system. Second, we align every APs relative trajectory into a single one, called trajectory alignment, equivalent to transformation to the global coordinate system. As a result, we can estimate the sequence of the users absolute locations from the aligned trajectory. Various field experiments extensively verify the proposed algorithms effectiveness that the average positioning error is approximately 0.369 (m) and 1.705 (m) in LOS and NLOS environments, respectively.
The accuracy of smartphone-based positioning methods using WiFi usually suffers from ranging errors caused by non-line-of-sight (NLOS) conditions. Previous research usually exploits several statistical features from a long time series (hundreds of samples) of WiFi received signal strength (RSS) or WiFi round-trip time (RTT) to achieve a high identification accuracy. However, the long time series or large sample size attributes to high power and time consumption in data collection for both training and testing. This will also undoubtedly be detrimental to user experience as the waiting time of getting enough samples is quite long. Therefore, this paper proposes a new real-time NLOS/LOS identification method for smartphone-based indoor positioning system using WiFi RTT and RSS. Based on our extensive analysis of RSS and RTT features, a machine learning-based method using random forest was chosen and developed to separate the samples for NLOS/LOS conditions. Experiments in different environments show that our method achieves a discrimination accuracy of about 94% with a sample size of 10. Considering the theoretically shortest WiFi ranging interval of 100ms of the RTT-enabled smartphones, our algorithm is able to provide the shortest latency of 1s to get the testing result among all of the state-of-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا