Necessary and sufficient conditions for regularity of interval parametric matrices


Abstract in English

Matrix regularity is a key to various problems in applied mathematics. The sufficient conditions, used for checking regularity of interval parametric matrices, usually fail in case of large parameter intervals. We present necessary and sufficient conditions for regularity of interval parametric matrices in terms of boundary parametric hypersurfaces, parametric solution sets, determinants, real spectral radiuses. The initial n-dimensional problem involving K interval parameters is replaced by numerous problems involving 1<= t <= min(n-1, K) interval parameters, in particular t=1 is most attractive. The advantages of the proposed methodology are discussed along with its application for finding the interval hull solution to interval parametric linear system and for determining the regularity radius of an interval parametric matrix.

Download