We study a set of four-dimensional $mathcal{N}=2$ superconformal field theories (SCFTs) $widehat{Gamma}(G)$ labeled by a pair of simply-laced Lie groups $Gamma$ and $G$. They are constructed out of gauging a number of $mathcal{D}_p(G)$ and $(G, G)$ conformal matter SCFTs; therefore they do not have Lagrangian descriptions in general. For $Gamma = D_4, E_6, E_7, E_8$ and some special choices of $G$, the resulting theories have identical central charges $(a=c)$ without taking any large $N$ limit. Moreover, we find that the Schur indices for such theories can be written in terms of that of $mathcal{N}=4$ super Yang-Mills theory upon rescaling fugacities. Especially, we find that the Schur index of $widehat{D}_4(SU(N))$ theory for $N$ odd is written in terms of MacMahons generalized sum-of-divisor function, which is quasi-modular. For generic choices of $Gamma$ and $G$, it can be regarded as a generalization of the affine quiver gauge theory obtained from $D3$-branes probing an ALE singularity of type $Gamma$. We also comment on a tantalizing connection regarding the theories labeled by $Gamma$ in the Deligne-Cvitanovic exceptional series.