Swirling and snaking, 3D oscillatory bifurcations of vesicle dynamics in microcirculation


Abstract in English

Vesicles are soft elastic bodies with distinctive mechanical properties such as bending resistance, membrane fluidity, and their strong ability to deform, mimicking some properties of biological cells. While previous three-dimensional (3D) studies have identified stationary shapes such as slipper and axisymmetric ones, we report a complete phase diagram of 3D vesicle dynamics in a bounded Poiseuille flow with two more oscillatory dynamics, 3D snaking and swirling. 3D snaking is characterized by planar oscillatory motion of the mass center and shape deformations, which is unstable and leads to swirling or slipper. Swirling emerges from supercritical pitchfork bifurcation. The mass center moves along a helix, the preserved shape rolls on itself and spins around the flow direction. Swirling can coexist with slipper.

Download