No Arabic abstract
We present the nonlinear fluctuating hydrodynamics which governs the late time dynamics of a chaotic many-body system with simultaneous charge/mass, dipole/center of mass, and momentum conservation. This hydrodynamic effective theory is unstable below four spatial dimensions: dipole-conserving fluids at rest become unstable to fluctuations, and are governed not by hydrodynamics, but by a fractonic generalization of the Kardar-Parisi-Zhang universality class. We numerically simulate many-body classical dynamics in one-dimensional models with dipole and momentum conservation, and find evidence for a breakdown of hydrodynamics, along with a new universality class of undriven yet non-equilbrium dynamics.
Low-energy dynamics of many-body fracton excitations necessary to describe topological defects should be governed by a novel type of hydrodynamic theory. We use a Poisson bracket approach to systematically derive hydrodynamic equations from conservation laws of scalar theories with fracton excitations. We study two classes of theories. In the first class we introduce a general action for a scalar with a shift symmetry linear in the spatial coordinates, while the second class serves as a toy model for disclinations and dislocations propagating along the Burgers vector. We apply our construction to study hydrodynamic fluctuations around equilibrium states and derive the dispersion relations of hydrodynamic modes.
A tremendous amount of recent attention has focused on characterizing the dynamical properties of periodically driven many-body systems. Here, we use a novel numerical tool termed `density matrix truncation (DMT) to investigate the late-time dynamics of large-scale Floquet systems. We find that DMT accurately captures two essential pieces of Floquet physics, namely, prethermalization and late-time heating to infinite temperature. Moreover, by implementing a spatially inhomogeneous drive, we demonstrate that an interplay between Floquet heating and diffusive transport is crucial to understanding the systems dynamics. Finally, we show that DMT also provides a powerful method for quantitatively capturing the emergence of hydrodynamics in static (un-driven) Hamiltonians; in particular, by simulating the dynamics of generic, large-scale quantum spin chains (up to L = 100), we are able to directly extract the energy diffusion coefficient.
We show how U(1) lattice gauge theories display key signatures of ergodicity breaking in the presence of a random charge background. Contrary to the widely studied case of spin models, in the presence of Coulomb interactions, the spectral properties of such lattice gauge theories are very weakly affected by finite-volume effects. This allows to draw a sharp boundary for the ergodic regime, and thus the breakdown of quantum chaos for sufficiently strong gauge couplings, at the system sizes accessible via exact diagonalization. Our conclusions are independent on the value of a background topological angle, and are contrasted with a gauge theory with truncated Hilbert space, where instead we observe very strong finite-volume effects akin to those observed in spin chains.
The morphology and the microscopic internal dynamics of a bidimensional gel formed by spontaneous aggregation of gold nanoparticles confined at the water surface are investigated by a suite of techniques, including grazing-incidence x-ray photon correlation spectroscopy (GI-XPCS). The range of concentrations studied spans across the percolation transition for the formation of the gel. The dynamical features observed by GI-XPCS are interpreted in view of the results of microscopical imaging; an intrinsic link between the mechanical modulus and internal dynamics is demonstrated for all the concentrations. Our work presents, to the best of our knowledge, the first example of a transition from stretched to compressed correlation function actively controlled by quasistatically varying the relevant thermodynamic variable. Moreover, by applying a model proposed time ago by Duri and Cipelletti [A. Duri and L. Cipelletti, Europhys. Lett. 76, 972 (2006)] we are able to build a novel master curve for the shape parameter, whose scaling factor allows us to quantify a long time displacement length. This characteristic length is shown to converge, as the concentration is increased, to the short time localization length determined by pseudo Debye-Waller analysis of the initial contrast. Finally, the intrinsic dynamics of the system are then compared with that induced by means of a delicate mechanical perturbation applied to the interface.
We design a set of classical macroscopic electric circuits in which charge exhibits the mobility restrictions of fracton quasiparticles. The crucial ingredient in these circuits is a transformer, which induces currents between pairs of adjacent wires. For an appropriately designed geometry, this induction serves to enforce conservation of dipole moment. We show that a network of capacitors connected via ideal transformers will forever remember the dipole moment of its initial charge configuration. Relaxation of the dipole moment in realistic systems can only occur via flux leakage in the transformers, which will lead to violations of fracton physics at the longest times. We propose a concrete diagnostic for these fractolectric circuits in the form of their characteristic equilibrium charge configurations, which we verify using simple circuit simulation software. These circuits not only provide an experimental testing ground for fracton physics, but also serve as DC filters. We outline extensions of these ideas to circuits featuring other types of higher moment conservation laws, as well as to higher-dimensional circuits which act as fracton current-ice. While our focus is on classical circuits, we discuss how these ideas can be straightforwardly extended to realize quantized fractons in superconducting circuits.