Do you want to publish a course? Click here

Federated Meta Learning Enhanced Acoustic Radio Cooperative Framework for Ocean of Things Underwater Acoustic Communications

165   0   0.0 ( 0 )
 Added by Hao Zhao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Sixth-generation wireless communication (6G) will be an integrated architecture of space, air, ground and sea. One of the most difficult part of this architecture is the underwater information acquisition which need to transmitt information cross the interface between water and air.In this senario, ocean of things (OoT) will play an important role, because it can serve as a hub connecting Internet of things (IoT) and Internet of underwater things (IoUT). OoT device not only can collect data through underwater methods, but also can utilize radio frequence over the air. For underwater communications, underwater acoustic communications (UWA COMMs) is the most effective way for OoT devices to exchange information, but it is always tormented by doppler shift and synchronization errors. In this paper, in order to overcome UWA tough conditions, a deep neural networks based receiver for underwater acoustic chirp communication, called C-DNN, is proposed. Moreover, to improve the performance of DL-model and solve the problem of model generalization, we also proposed a novel federated meta learning (FML) enhanced acoustic radio cooperative (ARC) framework, dubbed ARC/FML, to do transfer. Particularly, tractable expressions are derived for the convergence rate of FML in a wireless setting, accounting for effects from both scheduling ratio, local epoch and the data amount on a single node.From our analysis and simulation results, it is shown that, the proposed C-DNN can provide a better BER performance and lower complexity than classical matched filter (MF) in underwater acoustic communications scenario. The ARC/FML framework has good convergence under a variety of channels than federated learning (FL). In summary, the proposed ARC/FML for OoT is a promising scheme for information exchange across water and air.



rate research

Read More

In the coming 6G communications, the internet of things (IoT) serves as a key enabler to collect environmental information and is expected to achieve ubiquitous deployment. However, it is challenging for traditional IoT sensors to meet this demand because of their requirement of power supplies and frequent maintenance, which is due to their sense-then-transmit working principle. To address this challenge, we propose a meta-IoT sensing system, where the IoT sensors are based on specially designed meta-materials. The meta-IoT sensors achieve simultaneous sensing and transmission and thus require no power supplies. In order to design a meta-IoT sensing system with optimal sensing accuracy, we jointly consider the sensing and transmission of meta-IoT sensors and propose an efficient algorithm to jointly optimizes the meta-IoT structure and the sensing function at the receiver of the system. As an example, we apply the proposed system and algorithm in sensing environmental temperature and humidity levels. Simulation results show that by using the proposed algorithm, the sensing accuracy can be significantly increased.
In this work, we focus on the model-mismatch problem for model-based subspace channel tracking in the correlated underwater acoustic channel. A model based on the underwater acoustic channels correlation can be used as the state-space model in the Kalman filter to improve the underwater acoustic channel tracking compared that without a model. Even though the data support the assumption that the model is slow-varying and uncorrelated to some degree, to improve the tracking performance further, we can not ignore the model-mismatch problem because most channel models encounter this problem in the underwater acoustic channel. Therefore, in this work, we provide a dynamic time-variant state-space model for underwater acoustic channel tracking. This model is tolerant to the slight correlation after decorrelation. Moreover, a forward-backward Kalman filter is combined to further improve the tracking performance. The performance of our proposed algorithm is demonstrated with the same at-sea data as that used for conventional channel tracking. Compared with the conventional algorithms, the proposed algorithm shows significant improvement, especially in rough sea conditions in which the channels are fast-varying.
Underwater acoustic (UWA) communication plays a key role in the process of exploring and studying the ocean. In this paper, a modified non-stationary wideband channel model for UWA communication in shallow water scenarios is proposed. In this geometry-based stochastic model (GBSM), multiple motion effects, time-varying angles, distances, clusters locations with the channel geometry, and the ultra-wideband property are considered, which makes the proposed model more realistic and capable of supporting long time/distance simulations. Some key statistical properties are investigated, including temporal autocorrelation function (ACF), power delay profile (PDP), average delay, and root mean square (RMS) delay spread. The impacts of multiple motion factors on temporal ACFs are analyzed. Simulation results show that the proposed model can mimic the non-stationarity of UWA channels. Finally, the proposed model is validated with measurement data.
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area.
Differential orthogonal frequency division multiplexing (OFDM) is practically attractive for underwater acoustic communications since it has the potential to obviate channel estimation. However, similar to coherent OFDM, it may suffer from severe inter-carrier interference over time-varying channels. To alleviate the induced performance degradation, we adopt the newly-emerging partial FFT demodulation technique in this paper and propose an eigendecomposition-based algorithm to compute the combining weights. Compared to existing adaptive methods, the new algorithm can avoid error propagation and eliminate the need for parameter tuning. Moreover, it guarantees global optimality under the narrowband Doppler assumption, with the optimal weight vector of partial FFT demodulation achieved by the eigenvector associated with the smallest eigenvalue of the pilot detection error matrix. Finally, the algorithm can also be extended straightforwardly to perform subband-wise computation to counteract wideband Doppler effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا