Do you want to publish a course? Click here

Privacy-Preserving Constrained Domain Generalization for Medical Image Classification

121   0   0.0 ( 0 )
 Added by Xing Tian
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep neural networks (DNN) have demonstrated unprecedented success for medical imaging applications. However, due to the issue of limited dataset availability and the strict legal and ethical requirements for patient privacy protection, the broad applications of medical imaging classification driven by DNN with large-scale training data have been largely hindered. For example, when training the DNN from one domain (e.g., with data only from one hospital), the generalization capability to another domain (e.g., data from another hospital) could be largely lacking. In this paper, we aim to tackle this problem by developing the privacy-preserving constrained domain generalization method, aiming to improve the generalization capability under the privacy-preserving condition. In particular, We propose to improve the information aggregation process on the centralized server-side with a novel gradient alignment loss, expecting that the trained model can be better generalized to the unseen but related medical images. The rationale and effectiveness of our proposed method can be explained by connecting our proposed method with the Maximum Mean Discrepancy (MMD) which has been widely adopted as the distribution distance measurement. Experimental results on two challenging medical imaging classification tasks indicate that our method can achieve better cross-domain generalization capability compared to the state-of-the-art federated learning methods.



rate research

Read More

With the rising use of Machine Learning (ML) and Deep Learning (DL) in various industries, the medical industry is also not far behind. A very simple yet extremely important use case of ML in this industry is for image classification. This is important for doctors to help them detect certain diseases timely, thereby acting as an aid to reduce chances of human judgement error. However, when using automated systems like these, there is a privacy concern as well. Attackers should not be able to get access to the medical records and images of the patients. It is also required that the model be secure, and that the data that is sent to the model and the predictions that are received both should not be revealed to the model in clear text. In this study, we aim to solve these problems in the context of a medical image classification problem of detection of pneumonia by examining chest x-ray images.
In order to extract knowledge from the large data collected by edge devices, traditional cloud based approach that requires data upload may not be feasible due to communication bandwidth limitation as well as privacy and security concerns of end users. To address these challenges, a novel privacy preserving edge computing framework is proposed in this paper for image classification. Specifically, autoencoder will be trained unsupervised at each edge device individually, then the obtained latent vectors will be transmitted to the edge server for the training of a classifier. This framework would reduce the communications overhead and protect the data of the end users. Comparing to federated learning, the training of the classifier in the proposed framework does not subject to the constraints of the edge devices, and the autoencoder can be trained independently at each edge device without any server involvement. Furthermore, the privacy of the end users data is protected by transmitting latent vectors without additional cost of encryption. Experimental results provide insights on the image classification performance vs. various design parameters such as the data compression ratio of the autoencoder and the model complexity.
185 - Rulin Shao , Hongyu He , Hui Liu 2019
Artificial neural network has achieved unprecedented success in the medical domain. This success depends on the availability of massive and representative datasets. However, data collection is often prevented by privacy concerns and people want to take control over their sensitive information during both training and using processes. To address this problem, we propose a privacy-preserving method for the distributed system, Stochastic Channel-Based Federated Learning (SCBF), which enables the participants to train a high-performance model cooperatively without sharing their inputs. Specifically, we design, implement and evaluate a channel-based update algorithm for the central server in a distributed system, which selects the channels with regard to the most active features in a training loop and uploads them as learned information from local datasets. A pruning process is applied to the algorithm based on the validation set, which serves as a model accelerator. In the experiment, our model presents better performances and higher saturating speed than the Federated Averaging method which reveals all the parameters of local models to the server when updating. We also demonstrate that the saturating rate of performance could be promoted by introducing a pruning process. And further improvement could be achieved by tuning the pruning rate. Our experiment shows that 57% of the time is saved by the pruning process with only a reduction of 0.0047 in AUCROC performance and a reduction of 0.0068 in AUCPR.
136 - Robin M. Schmidt 2021
Traditionally, for most machine learning settings, gaining some degree of explainability that tries to give users more insights into how and why the network arrives at its predictions, restricts the underlying model and hinders performance to a certain degree. For example, decision trees are thought of as being more explainable than deep neural networks but they lack performance on visual tasks. In this work, we empirically demonstrate that applying methods and architectures from the explainability literature can, in fact, achieve state-of-the-art performance for the challenging task of domain generalization while offering a framework for more insights into the prediction and training process. For that, we develop a set of novel algorithms including DivCAM, an approach where the network receives guidance during training via gradient based class activation maps to focus on a diverse set of discriminative features, as well as ProDrop and D-Transformers which apply prototypical networks to the domain generalization task, either with self-challenging or attention alignment. Since these methods offer competitive performance on top of explainability, we argue that the proposed methods can be used as a tool to improve the robustness of deep neural network architectures.
Recently, we have witnessed great progress in the field of medical imaging classification by adopting deep neural networks. However, the recent advanced models still require accessing sufficiently large and representative datasets for training, which is often unfeasible in clinically realistic environments. When trained on limited datasets, the deep neural network is lack of generalization capability, as the trained deep neural network on data within a certain distribution (e.g. the data captured by a certain device vendor or patient population) may not be able to generalize to the data with another distribution. In this paper, we introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification. Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding with a novel linear-dependency regularization term to capture the shareable information among medical data collected from different domains. As a result, the trained neural network is expected to equip with better generalization capability to the unseen medical data. Experimental results on two challenging medical imaging classification tasks indicate that our method can achieve better cross-domain generalization capability compared with state-of-the-art baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا