Do you want to publish a course? Click here

Generation of ultra-relativistic monoenergetic electron bunches via a synergistic interaction of longitudinal electric and magnetic fields of a twisted laser

125   0   0.0 ( 0 )
 Added by Yin Shi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use 3D simulations to demonstrate that high-quality ultra-relativistic electron bunches can be generated upon reflection of a twisted laser beam off a plasma mirror. The unique topology of the beam with a twist index $|l| = 1$ creates an accelerating structure dominated by longitudinal laser electric and magnetic fields in the near-axis region. We show that the magnetic field is essential for creating a train of dense mono-energetic bunches. For a 6.8~PW laser, the energy reaches 1.6~GeV with a spread of 5.5%. The bunch duration is 320 as, its charge is 60~pC and density is $sim 10^{27}$~m$^{-3}$. The results are confirmed by an analytical model for the electron energy gain. These results enable development of novel laser-driven accelerators at multi-PW laser facilities.



rate research

Read More

It is shown that electrons with momenta exceeding the `free electron limit of $m_eca_0^2/2$ can be produced when a laser pulse and a longitudinal electric field interact with an electron via a non-wakefield mechanism. The mechanism consists of two stages: the reduction of the electron dephasing rate $gamma-p_x/m_ec$ by an accelerating region of electric field and electron acceleration by the laser via the Lorentz force. This mechanism can, in principle, produce electrons that have longtudinal momenta that is a significant multiple of $m_eca_0^2/2$. 2D PIC simulations of a relatively simple laser-plasma interaction indicate that the generation of super-ponderomotive electrons is strongly affected by this `anti-dephasing mechanism.
The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles which depend on the ratios of droplet radius to wavelength and plasma frequency to laser frequency. The mechanism behind the multi-MeV attosecond electron bunch generation is investigated using Mie theory. It is shown that the angular distribution and the high electron energies are due to a parameter-sensitive, time-dependent local field enhancement at the droplet surface.
308 - K. D. Xiao , C. T. Zhou , H. Zhang 2018
Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten kilotesla can be observed in the ultraintense laser-solenoid target interactions. The finding is associated with both fast and return electron currents in the solenoid target. The huge longitudinal magnetic field is of interest for a number of important applications, which include controlling the divergence of laser-driven energetic particles for medical treatment, fast-ignition in inertial fusion, etc., as an example, the well focused and confined directional electron beams are realized by using the solenoid target.
We present the results of 3-dimensional kinetic simulations and theoretical studies on the formation and evolution of the current sheet in a collisionless plasma during magnetic field annihilation in the ultra-relativistic limit. Annihilation of oppositively directed magnetic fields driven by two laser pulses interacting with underdense plasma target is accompanied by an electromagnetic burst generation. The induced strong non-stationary longitudinal electric field accelerates charged particles within the current sheet. Properties of the laser-plasma target configuration are discussed in the context of the laboratory modeling for charged particle acceleration and gamma flash generation in astrophysics.
Laser-plasma electron accelerators can be used to produce high-intensity X-rays, as electrons accelerated in wakefields emit radiation due to betatron oscillations.Such X-ray sources inherit the features of the electron beam; sub-femtosecond electron bunches produce betatron sources of the same duration, which in turn allow probing matter on ultrashort time scales. In this paper we show, via Particle-in-Cell simulations, that attosecond electron bunches can be obtained using low-energy, ultra-short laser beams both in the self-injection and the controlled injection regimes at low plasma densities. However, only in the controlled regime does the electron injection lead to a stable, isolated attosecond electron bunch. Such ultrashort electron bunches are shown to emit attosecond X-ray bursts with high brilliance
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا