No Arabic abstract
Minimum divergence procedures based on the density power divergence and the logarithmic density power divergence have been extremely popular and successful in generating inference procedures which combine a high degree of model efficiency with strong outlier stability. Such procedures are always preferable in practical situations over procedures which achieve their robustness at a major cost of efficiency or are highly efficient but have poor robustness properties. The density power divergence (DPD) family of Basu et al.(1998) and the logarithmic density power divergence (LDPD) family of Jones et al.(2001) provide flexible classes of divergences where the adjustment between efficiency and robustness is controlled by a single, real, non-negative parameter. The usefulness of these two families of divergences in statistical inference makes it meaningful to search for other related families of divergences in the same spirit. The DPD family is a member of the class of Bregman divergences, and the LDPD family is obtained by log transformations of the different segments of the divergences within the DPD family. Both the DPD and LDPD families lead to the Kullback-Leibler divergence in the limiting case as the tuning parameter $alpha rightarrow 0$. In this paper we study this relation in detail, and demonstrate that such log transformations can only be meaningful in the context of the DPD (or the convex generating function of the DPD) within the general fold of Bregman divergences, giving us a limit to the extent to which the search for useful divergences could be successful.
The density power divergence (DPD) and related measures have produced many useful statistical procedures which provide a good balance between model efficiency on one hand, and outlier stability or robustness on the other. The large number of citations received by the original DPD paper (Basu et al., 1998) and its many demonstrated applications indicate the popularity of these divergences and the related methods of inference. The estimators that are derived from this family of divergences are all M-estimators where the defining $psi$ function is based explicitly on the form of the model density. The success of the minimum divergence estimators based on the density power divergence makes it imperative and meaningful to look for other, similar divergences in the same spirit. The logarithmic density power divergence (Jones et al., 2001), a logarithmic transform of the density power divergence, has also been very successful in producing inference procedures with a high degree of efficiency simultaneously with a high degree of robustness. This further strengthens the motivation to look for statistical divergences that are transforms of the density power divergence, or, alternatively, members of the functional density power divergence class. This note characterizes the functional density power divergence class, and thus identifies the available divergence measures within this construct that may possibly be explored for robust and efficient statistical inference.
Multivariate distributions are explored using the joint distributions of marginal sample quantiles. Limit theory for the mean of a function of order statistics is presented. The results include a multivariate central limit theorem and a strong law of large numbers. A result similar to Bahadurs representation of quantiles is established for the mean of a function of the marginal quantiles. In particular, it is shown that [sqrt{n}Biggl(frac{1}{n}sum_{i=1}^nphibigl(X_{n:i}^{(1)},...,X_{n:i}^{(d)}bigr)-bar{gamma}Biggr)=frac{1}{sqrt{n}}sum_{i=1}^nZ_{n,i}+mathrm{o}_P(1)] as $nrightarrowinfty$, where $bar{gamma}$ is a constant and $Z_{n,i}$ are i.i.d. random variables for each $n$. This leads to the central limit theorem. Weak convergence to a Gaussian process using equicontinuity of functions is indicated. The results are established under very general conditions. These conditions are shown to be satisfied in many commonly occurring situations.
A function $rho:[0,infty)to(0,1]$ is a completely monotonic function if and only if $rho(Vertmathbf{x}Vert^2)$ is positive definite on $mathbb{R}^d$ for all $d$ and thus it represents the correlation function of a weakly stationary and isotropic Gaussian random field. Radial positive definite functions are also of importance as they represent characteristic functions of spherically symmetric probability distributions. In this paper, we analyze the function [rho(beta ,gamma)(x)=1-biggl(frac{x^{beta}}{1+x^{beta}}biggr )^{gamma},qquad xge 0, beta,gamma>0,] called the Dagum function, and show those ranges for which this function is completely monotonic, that is, positive definite, on any $d$-dimensional Euclidean space. Important relations arise with other families of completely monotonic and logarithmically completely monotonic functions.
Let $Omega$ be a bounded closed convex set in ${mathbb R}^d$ with non-empty interior, and let ${cal C}_r(Omega)$ be the class of convex functions on $Omega$ with $L^r$-norm bounded by $1$. We obtain sharp estimates of the $epsilon$-entropy of ${cal C}_r(Omega)$ under $L^p(Omega)$ metrics, $1le p<rle infty$. In particular, the results imply that the universal lower bound $epsilon^{-d/2}$ is also an upper bound for all $d$-polytopes, and the universal upper bound of $epsilon^{-frac{(d-1)}{2}cdot frac{pr}{r-p}}$ for $p>frac{dr}{d+(d-1)r}$ is attained by the closed unit ball. While a general convex body can be approximated by inscribed polytopes, the entropy rate does not carry over to the limiting body. Our results have applications to questions concerning rates of convergence of nonparametric estimators of high-dimensional shape-constrained functions.
Environments with immobile obstacles or void regions that inhibit and alter the motion of individuals within that environment are ubiquitous. Correlation in the location of individuals within such environments arises as a combination of the mechanisms governing individual behavior and the heterogeneous structure of the environment. Measures of spatial structure and correlation have been successfully implemented to elucidate the roles of the mechanisms underpinning the behavior of individuals. In particular, the pair correlation function has been used across biology, ecology and physics to obtain quantitative insight into a variety of processes. However, naively applying standard pair correlation functions in the presence of obstacles may fail to detect correlation, or suggest false correlations, due to a reliance on a distance metric that does not account for obstacles. To overcome this problem, here we present an analytic expression for calculating a corrected pair correlation function for lattice-based domains containing obstacles. We demonstrate that this corrected pair correlation function is necessary for isolating the correlation associated with the behavior of individuals, rather than the structure of the environment. Using simulations that mimic cell migration and proliferation we demonstrate that the corrected pair correlation function recovers the short-range correlation known to be present in this process, independent of the heterogeneous structure of the environment. Further, we show that the analytic calculation of the corrected pair correlation derived here is significantly faster to implement than the corresponding numerical approach.