Do you want to publish a course? Click here

Discovery of the Highly-Neutronized Ejecta Clump with Enhanced Abundances of Titanium and Chromium in the Type Ia Supernova Remnant 3C 397

194   0   0.0 ( 0 )
 Added by Yuken Ohshiro
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The supernova remnant (SNR) 3C 397 is thought to originate from a Type Ia supernova (SN Ia) explosion of a near-Chandrasekhar-mass ($M_{rm Ch}$) progenitor, based on the enhanced abundances of Mn and Ni revealed by previous X-ray study with Suzaku. Here we report follow-up XMM-Newton observations of this SNR, conducted with the aim of investigating the detailed spatial distribution of the Fe-peak elements. We have discovered an ejecta clump with extremely high abundances of Ti and Cr, in addition to Mn, Fe, and Ni, in the southern part of the SNR. The Fe mass of this ejecta clump is estimated to be $sim$ 0.06 $M_{odot}$, under the assumption of a typical Fe yield for SNe Ia (i.e., $sim$ 0.8 $M_{odot}$). The observed mass ratios among the Fe-peak elements and Ti require substantial neutronization that is achieved only in the innermost regions of a near-$M_{rm Ch}$ SN Ia with a central density of $rho_c sim 5 times 10^9$ g cm$^{-3}$, significantly higher than typically assumed for standard near-$M_{rm Ch}$ SNe Ia ($rho_c sim 2 times 10^9$ g cm$^{-3}$). The overproduction of the neutron-rich isotopes (e.g., $^{50}$Ti and $^{54}$Cr) is significant in such high-$rho_c$ SNe Ia, with respect to the solar composition. Therefore, if 3C 397 is a typical high-$rho_c$ near-$M_{rm Ch}$ SN Ia remnant, the solar abundances of these isotopes could be reproduced by the mixture of the high- and low-$rho_c$ near-$M_{rm Ch}$ and sub-$M_{rm Ch}$ Type Ia events, with $lesssim$ 20 % being high-$rho_c$ near-$M_{rm Ch}$.

rate research

Read More

The explosive origin of the young supernova remnant (SNR) 3C 397 (G41.1-0.3) is debated. Its elongated morphology and proximity to a molecular cloud are suggestive of a core-collapse (CC) SN origin, yet recent X-ray studies of heavy metals show chemical yields and line centroid energies consistent with a Type Ia SN. In this paper, we analyze the full X-ray spectrum from 0.7-10 keV of 3C 397 observed with Suzaku and compare the line centroid energies, fluxes, and elemental abundances of intermediate-mass and heavy metals (Mg to Ni) to Type Ia and CC hydrodynamical model predictions. Based on the results, we conclude that 3C 397 likely arises from an energetic Type Ia explosion in a high-density ambient medium, and we show that the progenitor was a near Chandrasekhar mass white dwarf.
We present a 190 ks observation of the Galactic supernova remnant (SNR) G306.3-0.9 with Suzaku. To study ejecta properties of this possible Type Ia SNR, the absolute energy scale at the Fe-K band was calibrated to a level of uncertainty less than 10 eV by a cross-calibration with the Hitomi microcalorimeter using the Perseus cluster spectra. This enabled us for the first time to accurately determine the ionization state of the Fe K$alpha$ line of this SNR. The ionization timescale ($tau$) of the Fe ejecta was measured to be $log_{10} tau$ (cm$^{-3}$ s) $=10.24pm0.03$, significantly smaller than previous measurements. Marginally detected K$alpha$ lines of Cr and Mn have consistent ionization timescales with Fe. The global spectrum was well fitted with shocked interstellar matter (ISM) and at least two ejecta components with different ionization timescales for Fe and intermediate mass elements (IME) such as S and Ar. One plausible interpretation of the one-order-of-magnitude shorter timescale of Fe than that of IME ($log_{10} tau = 11.17pm0.07$) is a chemically stratified structure of ejecta. By comparing the X-ray absorption column to the HI distribution decomposed along the line of sight, we refined the distance to be $sim$20 kpc. The large ISM-to-ejecta shocked mass ratio of $sim$100 and dynamical timescale of $sim$6 kyr place the SNR in the late Sedov phase. These properties are consistent with a stratified ejecta structure that has survived the mixing processes expected in an evolved supernova remnant.
Recent X-ray study of middle-aged supernova remnants (SNRs) reveals strong radiative recombination continua (RRCs) associated with overionized plasmas, of which the origin still remains uncertain. We report our discovery of an RRC in the middle-aged SNR 3C 391. If the X-ray spectrum is fitted with a two-temperature plasma model in collisional ionization equilibrium (CIE), residuals of Si XIV Ly alpha line at 2.006 keV, S XVI Ly alpha line at 2.623 keV and the edge of RRC of Si XIII at 2.666 keV are found. The X-ray spectrum is better described by a composite model consisting of a CIE plasma and a recombining plasma (RP). The abundance pattern suggests that the RP is associated to the ejecta from a core-collapse supernova with a progenitor star of 15 solar mass. There is no significant difference of the recombining plasma parameters between the southeast region and the northwest region surrounded by dense molecular clouds. We also find a hint of Fe I K alpha line at 6.4 keV (~2.4 sigma detection) from the southeast region of the SNR.
107 - Gregory S. Vance 2020
Mixing above the proto-neutron star is believed to play an important role in the supernova engine, and this mixing results in a supernova explosion with asymmetries. Elements produced in the innermost ejecta, e.g., ${}^{56}$Ni and ${}^{44}$Ti, provide a clean probe of this engine. The production of ${}^{44}$Ti is particularly sensitive to the exact production pathway and, by understanding the available pathways, we can use ${}^{44}$Ti to probe the supernova engine. Using thermodynamic trajectories from a three-dimensional supernova explosion model, we review the production of these elements and the structures expected to form under the convective-engine paradigm behind supernovae. We compare our results to recent X-ray and $gamma$-ray observations of the Cassiopeia A supernova remnant.
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities larger than about 18,000 km/s have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe Kalpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities larger than 18,000 km/s were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا