Do you want to publish a course? Click here

Optical microscopy-based thickness estimation in thin GaSe flakes

273   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have implemented three different optical methods to quantitatively assess the thickness of thin GaSe flakes transferred on both transparent substrates, like Gel-Film, or SiO2/Si substrates. We show how their apparent color can be an efficient way to make a quick rough estimation of the thickness of the flakes. This method is more effective for SiO2/Si substrates as the thickness dependent color change is more pronounced on these substrates than on transparent substrates. On the other hand, for transparent substrates, the transmittance of the flakes in the blue region of the visible spectrum can be used to estimate the thickness. We find that the transmittance of flakes in the blue part of the spectrum decreases at a rate of 1.2%/nm. On SiO2/Si, the thickness of the flakes can be accurately determined by fitting optical contrast spectra to a Fresnel law-based model. Finally, we also show how the quantitative analysis of transmission mode optical microscopy images can be a powerful method to quickly probe the environmental degradation of GaSe flakes exposed to aging conditions.



rate research

Read More

We present a method to realize active optical tips for use in near-field optics that can operate at room temperature. A metal-coated optical tip is covered with a thin polymer layer stained with CdSe nanocrystals or nanorods at low density. The time analysis of the emission rate and emission spectra of the active tips reveal that a very small number of particles - possibly down to only one - can be made active at the tip apex. This opens the way to near-field optics with a single inorganic nanoparticle as a light source.
Indium selenide (InSe), as a novel van der Waals layered semiconductor, has attracted a large research interest thanks to its excellent optical and electrical properties in the ultra-thin limit. Here, we discuss four different optical methods to quantitatively identify the thickness of thin InSe flakes on various substrates, such as SiO2/Si or transparent polymeric substrates. In the case of thin InSe deposited on a transparent substrate, the transmittance of the flake in the blue region of the visible spectrum can be used to estimate the thickness. For InSe supported by SiO2/Si, the thickness of the flakes can be estimated either by assessing their apparent colors or accurately analyzed using a Fresnel-law based fitting model of the optical contrast spectra. Finally, we also studied the thickness dependency of the InSe photoluminescence emission energy, which provides an additional tool to estimate the InSe thickness and it works both for InSe deposited on SiO2/Si and on a transparent polymeric substrate.
We control the thickness of GaSe on the level of individual layers and study the corresponding optical absorption via highly sensitive differential transmission measurements. Suppression of excitonic transitions is observed when the number of layers is smaller than a critical value of 8. Through ab-initio modelling we are able to link this behavior to a fundamental change in the band structure that leads to the formation of a valence band shaped as an inverted Mexican hat in thin GaSe. The thickness-controlled modulation of the optical properties provides attractive resources for the development of functional optoelectronic devices based on a single material.
We present an optical setup that can be used to characterize the thicknesses of thin NbN films to screen samples for fabrication and to better model the performance of the resulting superconducting nanowire single photon detectors. The infrared transmissometer reported here is easy to use, gives results within minutes and is non-destructive. Thus, the thickness measurement can be easily integrated into the workflow of deposition and characterization. Comparison to a similar visible-wavelength transmissometer is provided.
Atomically thin transition metal dichalcogenides (TMDs) have distinct opto-electronic properties including enhanced luminescence and high on-off current ratios, which can be further modulated by making more complex TMD heterostructures. However, resolution limits of conventional optical methods do not allow for direct optical-structural correlation measurements in these materials, particularly of buried interfaces in TMD heterostructures. Here we use, for the first time, electron beam induced cathodoluminescence in a scanning transmission electron microscope (CL-STEM) to measure optical properties of monolayer TMDs (WS2, MoS2 and WSSe alloy) encapsulated between layers of hBN. We observe dark areas resulting from localized (~ 100 nm) imperfect interfaces and monolayer folding, which shows that the intimate contact between layers in this application-relevant heterostructure is required for proper inter layer coupling. We also realize a suitable imaging method that minimizes electron-beam induced changes and provides measurement of intrinsic properties. To overcome the limitation of small electron interaction volume in TMD monolayer (and hence low photon yield), we find that encapsulation of TMD monolayers with hBN and subsequent annealing is important. CL-STEM offers to be a powerful method to directly measure structure-optical correspondence in lateral or vertical heterostructures and alloys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا