Do you want to publish a course? Click here

[Re] Dont Judge an Object by Its Context: Learning to Overcome Contextual Bias

57   0   0.0 ( 0 )
 Added by Sunnie S. Y. Kim
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Singh et al. (2020) point out the dangers of contextual bias in visual recognition datasets. They propose two methods, CAM-based and feature-split, that better recognize an object or attribute in the absence of its typical context while maintaining competitive within-context accuracy. To verify their performance, we attempted to reproduce all 12 tables in the original paper, including those in the appendix. We also conducted additional experiments to better understand the proposed methods, including increasing the regularization in CAM-based and removing the weighted loss in feature-split. As the original code was not made available, we implemented the entire pipeline from scratch in PyTorch 1.7.0. Our implementation is based on the paper and email exchanges with the authors. We found that both proposed methods in the original paper help mitigate contextual bias, although for some methods, we could not completely replicate the quantitative results in the paper even after completing an extensive hyperparameter search. For example, on COCO-Stuff, DeepFashion, and UnRel, our feature-split model achieved an increase in accuracy on out-of-context images over the standard baseline, whereas on AwA, we saw a drop in performance. For the proposed CAM-based method, we were able to reproduce the original papers results to within 0.5$%$ mAP. Our implementation can be found at https://github.com/princetonvisualai/ContextualBias.



rate research

Read More

Existing models often leverage co-occurrences between objects and their context to improve recognition accuracy. However, strongly relying on context risks a models generalizability, especially when typical co-occurrence patterns are absent. This work focuses on addressing such contextual biases to improve the robustness of the learnt feature representations. Our goal is to accurately recognize a category in the absence of its context, without compromising on performance when it co-occurs with context. Our key idea is to decorrelate feature representations of a category from its co-occurring context. We achieve this by learning a feature subspace that explicitly represents categories occurring in the absence of context along side a joint feature subspace that represents both categories and context. Our very simple yet effective method is extensible to two multi-label tasks -- object and attribute classification. On 4 challenging datasets, we demonstrate the effectiveness of our method in reducing contextual bias.
308 - Fan Wu , Zhongwen Xu , Yi Yang 2017
We propose an end-to-end approach to the natural language object retrieval task, which localizes an object within an image according to a natural language description, i.e., referring expression. Previous works divide this problem into two independent stages: first, compute region proposals from the image without the exploration of the language description; second, score the object proposals with regard to the referring expression and choose the top-ranked proposals. The object proposals are generated independently from the referring expression, which makes the proposal generation redundant and even irrelevant to the referred object. In this work, we train an agent with deep reinforcement learning, which learns to move and reshape a bounding box to localize the object according to the referring expression. We incorporate both the spatial and temporal context information into the training procedure. By simultaneously exploiting local visual information, the spatial and temporal context and the referring language a priori, the agent selects an appropriate action to take at each time. A special action is defined to indicate when the agent finds the referred object, and terminate the procedure. We evaluate our model on various datasets, and our algorithm significantly outperforms the compared algorithms. Notably, the accuracy improvement of our method over the recent method GroundeR and SCRC on the ReferItGame dataset are 7.67% and 18.25%, respectively.
Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data). This sample selection bias can cause catastrophic errors in predictions on the testing data because a) standard assumptions for machine-learned model selection procedures break down and b) dense regions of testing space might be completely devoid of training data. We explore possible remedies to sample selection bias, including importance weighting (IW), co-training (CT), and active learning (AL). We argue that AL---where the data whose inclusion in the training set would most improve predictions on the testing set are queried for manual follow-up---is an effective approach and is appropriate for many astronomical applications. For a variable star classification problem on a well-studied set of stars from Hipparcos and OGLE, AL is the optimal method in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods by at least 3.0%. To aid with manual labeling of variable stars, we developed a web interface which allows for easy light curve visualization and querying of external databases. Finally, we apply active learning to classify variable stars in the ASAS survey, finding dramatic improvement in our agreement with the ACVS catalog, from 65.5% to 79.5%, and a significant increase in the classifiers average confidence for the testing set, from 14.6% to 42.9%, after a few AL iterations.
Learning to re-identify or retrieve a group of people across non-overlapped camera systems has important applications in video surveillance. However, most existing methods focus on (single) person re-identification (re-id), ignoring the fact that people often walk in groups in real scenarios. In this work, we take a step further and consider employing context information for identifying groups of people, i.e., group re-id. We propose a novel unified framework based on graph neural networks to simultaneously address the group-based re-id tasks, i.e., group re-id and group-aware person re-id. Specifically, we construct a context graph with group members as its nodes to exploit dependencies among different people. A multi-level attention mechanism is developed to formulate both intra-group and inter-group context, with an additional self-attention module for robust graph-level representations by attentively aggregating node-level features. The proposed model can be directly generalized to tackle group-aware person re-id using node-level representations. Meanwhile, to facilitate the deployment of deep learning models on these tasks, we build a new group re-id dataset that contains more than 3.8K images with 1.5K annotated groups, an order of magnitude larger than existing group re-id datasets. Extensive experiments on the novel dataset as well as three existing datasets clearly demonstrate the effectiveness of the proposed framework for both group-based re-id tasks. The code is available at https://github.com/daodaofr/group_reid.
Person re-identification (reID) by CNNs based networks has achieved favorable performance in recent years. However, most of existing CNNs based methods do not take full advantage of spatial-temporal context modeling. In fact, the global spatial-temporal context can greatly clarify local distractions to enhance the target feature representation. To comprehensively leverage the spatial-temporal context information, in this work, we present a novel block, Interaction-Aggregation-Update (IAU), for high-performance person reID. Firstly, Spatial-Temporal IAU (STIAU) module is introduced. STIAU jointly incorporates two types of contextual interactions into a CNN framework for target feature learning. Here the spatial interactions learn to compute the contextual dependencies between different body parts of a single frame. While the temporal interactions are used to capture the contextual dependencies between the same body parts across all frames. Furthermore, a Channel IAU (CIAU) module is designed to model the semantic contextual interactions between channel features to enhance the feature representation, especially for small-scale visual cues and body parts. Therefore, the IAU block enables the feature to incorporate the globally spatial, temporal, and channel context. It is lightweight, end-to-end trainable, and can be easily plugged into existing CNNs to form IAUnet. The experiments show that IAUnet performs favorably against state-of-the-art on both image and video reID tasks and achieves compelling results on a general object categorization task. The source code is available at https://github.com/blue-blue272/ImgReID-IAnet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا