No Arabic abstract
Living cells are known to generate non-Gaussian active fluctuations that are significantly larger than thermal fluctuations owing to various metabolic activities. Understanding the effect of active fluctuations on various physicochemical processes, such as the transport of molecular motors, is a fundamental problem in nonequilibrium physics. Therefore, we experimentally and numerically study an active Brownian ratchet comprising a colloidal particle in an optically generated asymmetric periodic potential driven by non-Gaussian noise with finite-amplitude active bursts, each arriving at random and decaying exponentially. We determine that the particle velocity is maximum for relatively sparse bursts with finite correlation time and non-Gaussian distribution. These occasional kicks are more efficient for transport and diffusion enhancement of the particle, compared to the incessant kicks of active Ornstein-Uhlenbeck noise. The ratchet reverses its transport direction only when the noise correlation time is shorter than the thermal relaxation time, suggesting possible application in nanoparticle separation.
We study a general model of granular Brownian ratchet consisting of an asymmetric object moving on a line and surrounded by a two-dimensional granular gas, which in turn is coupled to an external random driving force. We discuss the two resulting Boltzmann equations describing the gas and the object in the dilute limit and obtain a closed system for the first few moments of the system velocity distributions. Predictions for the net ratchet drift, the variance of its velocity fluctuations and the transition rates in the Markovian limit, are compared to numerical simulations and a fair agreement is observed.
We investigate conductance and conductance fluctuations of two transmembrane proteins, bacteriorhodopsin and proteorhodopsin, belonging to the family of protein light receptors. These proteins are widely diffused in aqueous environments, are sensitive to visible light and are promising biomaterials for the realization of novel photodevices. The conductance exhibits a rapid increase at increasing applied voltages, over a threshold value. Around the threshold value the variance of conductance fluctuations shows a dramatic jump of about 5 orders of magnitude: conductance and variance behaviours trace a second order phase transition. Furthermore, the conductance fluctuations evidence a non-Gaussian behaviour with a probability density function (PDF) which follows a generalized Gumbel distribution, typical of extreme-value statistics. The theoretical model is validated on existing current-voltage measurements and the interpretation of the PDF of conductance fluctuations is proven to be in line with the microscopic mechanisms responsible of charge transport.
We present a comprehensive investigation of polymer diffusion in the semidilute regime by fluorescence correlation spectroscopy (FCS) and dynamic light scattering (DLS). Using single-labeled polystyrene chains, FCS leads to the self-diffusion coefficient while DLS gives the cooperative diffusion coefficient for exactly the same molecular weights and concentrations. Using FCS we observe a new fast mode in the semidilute entangled concentration regime beyond the slower mode which is due to self-diffusion. Comparison of FCS data with data obtained by DLS on the same polymers shows that the second mode observed in FCS is identical to the cooperative diffusion coefficient measured with DLS. An in-depth analysis and a comparison with current theoretical models demonstrates that the new cooperative mode observed in FCS is due to the effective long-range interaction of the chains through the transient entanglement network.
Intracellular transport of organelles is fundamental to cell function and health. The mounting evidence suggests that this transport is in fact anomalous. However, the reasons for the anomaly is still under debate. We examined experimental trajectories of organelles inside a living cell and propose a mathematical model that describes the previously reported transition from sub-diffusive to super-diffusive motion. In order to explain super-diffusive behaviour at long times, we introduce non-Markovian detachment kinetics of the cargo: the rate of detachment is inversely proportional to the time since the last attachment. Recently, we observed the non-Markovian detachment rate experimentally in eukaryotic cells. Here we further discuss different scenarios of how this effective non-Markovian detachment rate could arise. The non-Markovian model is successful in simultaneously describing the time-averaged variance (the time-averaged mean squared displacement corrected for directed motion), the mean first passage time of trajectories and the multiple peaks observed in the distributions of cargo velocities. We argue that non-Markovian kinetics could be biologically beneficial compared to the Markovian kinetics commonly used for modelling, by increasing the average distance the cargoes travel when a microtubule is blocked by other filaments. In turn, sub-diffusion allows cargoes to reach neighbouring filaments with higher probability, which promotes active motion along the microtubules.
We investigate directed motion in non-adiabatically rocked ratchet systems sustaining few bands below the barrier. Upon restricting the dynamics to the lowest M bands, the total system-plus-bath Hamiltonian is mapped onto a discrete tight-binding model containing all the information both on the intra- and inter-well tunneling motion. A closed form for the current in the incoherent tunneling regime is obtained. In effective single-band ratchets, no current rectification occurs. We apply our theory to describe rectification effects in vortex quantum ratchets devices. Current reversals upon variation of the ac-field amplitude or frequency are predicted.