Do you want to publish a course? Click here

Limit theorems for prices of options written on semi-Markov processes

155   0   0.0 ( 0 )
 Added by Bruno Toaldo
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We consider plain vanilla European options written on an underlying asset that follows a continuous time semi-Markov multiplicative process. We derive a formula and a renewal type equation for the martingale option price. In the case in which intertrade times follow the Mittag-Leffler distribution, under appropriate scaling, we prove that these option prices converge to the price of an option written on geometric Brownian motion time-changed with the inverse stable subordinator. For geometric Brownian motion time changed with an inverse subordinator, in the more general case when the subordinators Laplace exponent is a special Bernstein function, we derive a time-fractional generalization of the equation of Black and Scholes.



rate research

Read More

In this paper we consider some non linear Hawkes processes with signed reproduction function (or memory kernel) thus exhibiting both self-excitation and inhibition. We provide a Law of Large Numbers, a Central Limit Theorem and large deviation results, as time growths to infinity. The proofs lie on a renewal structure for these processes introduced in Costa et al. (2020) which leads to a comparison with cumulative processes. Explicit computations are made on some examples. Similar results have been obtained in the literature for self-exciting Hawkes processes only.
Applying quantitative perturbation theory for linear operators, we prove non-asymptotic limit theorems for Markov chains whose transition kernel has a spectral gap in an arbitrary Banach algebra of functions X . The main results are concentration inequalities and Berry-Esseen bounds, obtained assuming neither reversibility nor `warm start hypothesis: the law of the first term of the chain can be arbitrary. The spectral gap hypothesis is basically a uniform X-ergodicity hypothesis, and when X consist in regular functions this is weaker than uniform ergodicity. We show on a few examples how the flexibility in the choice of function space can be used. The constants are completely explicit and reasonable enough to make the results usable in practice, notably in MCMC methods.v2: Introduction rewritten, Section 3 applying the main results to examples improved (uniformly ergodic chains and Bernoulli convolutions have been notably added) . Main results and their proofs are unchanged.
In this paper, we study the asymptotic behavior of a supercritical $(xi,psi)$-superprocess $(X_t)_{tgeq 0}$ whose underlying spatial motion $xi$ is an Ornstein-Uhlenbeck process on $mathbb R^d$ with generator $L = frac{1}{2}sigma^2Delta - b x cdot abla$ where $sigma, b >0$; and whose branching mechanism $psi$ satisfies Greys condition and some perturbation condition which guarantees that, when $zto 0$, $psi(z)=-alpha z + eta z^{1+beta} (1+o(1))$ with $alpha > 0$, $eta>0$ and $betain (0, 1)$. Some law of large numbers and $(1+beta)$-stable central limit theorems are established for $(X_t(f) )_{tgeq 0}$, where the function $f$ is assumed to be of polynomial growth. A phase transition arises for the central limit theorems in the sense that the forms of the central limit theorem are different in three different regimes corresponding the branching rate being relatively small, large or critical at a balanced value.
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the supercritical case, when the process survives with a positive probability and grows exponentially fast on the nonextinction set. Our main is goal is establish Fourier techniques for this model, which allow to obtain a number of precise estimates related to limit theorems. As a consequence we provide new results concerning central limit theorem, Edgeworth expansions and renewal theorem for $log Z_n$.
Semi-Markov processes are a generalization of Markov processes since the exponential distribution of time intervals is replaced with an arbitrary distribution. This paper provides an integro-differential form of the Kolmogorovs backward equations for a large class of homogeneous semi-Markov processes, having the form of an abstract Volterra integro-differential equation. An equivalent evolutionary (differential) form of the equations is also provided. Fractional equations in the time variable are a particular case of our analysis. Weak limits of semi-Markov processes are also considered and their corresponding integro-differential Kolmogorovs equations are identified.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا