Do you want to publish a course? Click here

Fast-adapting and Privacy-preserving Federated Recommender System

82   0   0.0 ( 0 )
 Added by Qinyong Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In the mobile Internet era, the recommender system has become an irreplaceable tool to help users discover useful items, and thus alleviating the information overload problem. Recent deep neural network (DNN)-based recommender system research have made significant progress in improving prediction accuracy, which is largely attributed to the access to a large amount of users personal data collected from users devices and then centrally stored in the cloud server. However, as there are rising concerns around the globe on user privacy leakage in the online platform, the public is becoming anxious by such abuse of user privacy. Therefore, it is urgent and beneficial to develop a recommender system that can achieve both high prediction accuracy and high degree of user privacy protection. To this end, we propose a DNN-based recommendation model called PrivRec running on the decentralized federated learning (FL) environment, which ensures that a users data never leaves his/her during the course of model training. On the other hand, to better embrace the data heterogeneity commonly existing in FL, we innovatively introduce a first-order meta-learning method that enables fast in-device personalization with only few data points. Furthermore, to defense from potential malicious participant that poses serious security threat to other users, we develop a user-level differentially private DP-PrivRec model so that it is unable to determine whether a particular user is present or not solely based on the trained model. Finally, we conduct extensive experiments on two large-scale datasets in a simulated FL environment, and the results validate the superiority of our proposed PrivRec and DP-PrivRec.



rate research

Read More

News recommendation is critical for personalized news access. Most existing news recommendation methods rely on centralized storage of users historical news click behavior data, which may lead to privacy concerns and hazards. Federated Learning is a privacy-preserving framework for multiple clients to collaboratively train models without sharing their private data. However, the computation and communication cost of directly learning many existing news recommendation models in a federated way are unacceptable for user clients. In this paper, we propose an efficient federated learning framework for privacy-preserving news recommendation. Instead of training and communicating the whole model, we decompose the news recommendation model into a large news model maintained in the server and a light-weight user model shared on both server and clients, where news representations and user model are communicated between server and clients. More specifically, the clients request the user model and news representations from the server, and send their locally computed gradients to the server for aggregation. The server updates its global user model with the aggregated gradients, and further updates its news model to infer updated news representations. Since the local gradients may contain private information, we propose a secure aggregation method to aggregate gradients in a privacy-preserving way. Experiments on two real-world datasets show that our method can reduce the computation and communication cost on clients while keep promising model performance.
91 - Mingkai Huang , Hao Li , Bing Bai 2020
Privacy-preserving recommendations are recently gaining momentum, since the decentralized user data is increasingly harder to collect, by recommendation service providers, due to the serious concerns over user privacy and data security. This situation is further exacerbated by the strict government regulations such as Europes General Data Privacy Regulations(GDPR). Federated Learning(FL) is a newly developed privacy-preserving machine learning paradigm to bridge data repositories without compromising data security and privacy. Thus many federated recommendation(FedRec) algorithms have been proposed to realize personalized privacy-preserving recommendations. However, existing FedRec algorithms, mostly extended from traditional collaborative filtering(CF) method, cannot address cold-start problem well. In addition, their performance overhead w.r.t. model accuracy, trained in a federated setting, is often non-negligible comparing to centralized recommendations. This paper studies this issue and presents FL-MV-DSSM, a generic content-based federated multi-view recommendation framework that not only addresses the cold-start problem, but also significantly boosts the recommendation performance by learning a federated model from multiple data source for capturing richer user-level features. The new federated multi-view setting, proposed by FL-MV-DSSM, opens new usage models and brings in new security challenges to FL in recommendation scenarios. We prove the security guarantees of xxx, and empirical evaluations on FL-MV-DSSM and its variations with public datasets demonstrate its effectiveness. Our codes will be released if this paper is accepted.
Mobile crowdsensing (MCS) is an emerging sensing data collection pattern with scalability, low deployment cost, and distributed characteristics. Traditional MCS systems suffer from privacy concerns and fair reward distribution. Moreover, existing privacy-preserving MCS solutions usually focus on the privacy protection of data collection rather than that of data processing. To tackle faced problems of MCS, in this paper, we integrate federated learning (FL) into MCS and propose a privacy-preserving MCS system, called textsc{CrowdFL}. Specifically, in order to protect privacy, participants locally process sensing data via federated learning and only upload encrypted training models. Particularly, a privacy-preserving federated averaging algorithm is proposed to average encrypted training models. To reduce computation and communication overhead of restraining dropped participants, discard and retransmission strategies are designed. Besides, a privacy-preserving posted pricing incentive mechanism is designed, which tries to break the dilemma of privacy protection and data evaluation. Theoretical analysis and experimental evaluation on a practical MCS application demonstrate the proposed textsc{CrowdFL} can effectively protect participants privacy and is feasible and efficient.
Due to medical data privacy regulations, it is often infeasible to collect and share patient data in a centralised data lake. This poses challenges for training machine learning algorithms, such as deep convolutional networks, which often require large numbers of diverse training examples. Federated learning sidesteps this difficulty by bringing code to the patient data owners and only sharing intermediate model training updates among them. Although a high-accuracy model could be achieved by appropriately aggregating these model updates, the model shared could indirectly leak the local training examples. In this paper, we investigate the feasibility of applying differential-privacy techniques to protect the patient data in a federated learning setup. We implement and evaluate practical federated learning systems for brain tumour segmentation on the BraTS dataset. The experimental results show that there is a trade-off between model performance and privacy protection costs.
Singular value decomposition (SVD) is one of the most fundamental tools in machine learning and statistics.The modern machine learning community usually assumes that data come from and belong to small-scale device users. The low communication and computation power of such devices, and the possible privacy breaches of users sensitive data make the computation of SVD challenging. Federated learning (FL) is a paradigm enabling a large number of devices to jointly learn a model in a communication-efficient way without data sharing. In the FL framework, we develop a class of algorithms called FedPower for the computation of partial SVD in the modern setting. Based on the well-known power method, the local devices alternate between multiple local power iterations and one global aggregation to improve communication efficiency. In the aggregation, we propose to weight each local eigenvector matrix with Orthogonal Procrustes Transformation (OPT). Considering the practical stragglers effect, the aggregation can be fully participated or partially participated, where for the latter we propose two sampling and aggregation schemes. Further, to ensure strong privacy protection, we add Gaussian noise whenever the communication happens by adopting the notion of differential privacy (DP). We theoretically show the convergence bound for FedPower. The resulting bound is interpretable with each part corresponding to the effect of Gaussian noise, parallelization, and random sampling of devices, respectively. We also conduct experiments to demonstrate the merits of FedPower. In particular, the local iterations not only improve communication efficiency but also reduce the chance of privacy breaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا