Do you want to publish a course? Click here

Multiple measurements of quasars acting as standard probes: model independent calibration and exploring the Dark Energy Equation of States

81   0   0.0 ( 0 )
 Added by Xiaogang Zheng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, two classes of quasar samples were identified, which are promising as new cosmological probes extending to higher redshifts. The first sample uses the nonlinear relation between the ultraviolet and X-ray luminosities of quasars to derive luminosity distances, whereas the linear sizes of compact radio quasars in the second sample can serve as standardized rulers, providing angular-diameter distances. In this study, under the assumption of a flat universe, we refreshed the calibration of multiple measurements of high-redshift quasars (in the framework of a cosmological-model-independent method with the newest Hubble parameters data). Furthermore, we placed constraints on four models that characterize the cosmic equation of state ($w$). The obtained results show that: 1) the two quasar samples could provide promising complementary probes at much higher redshifts, whereas compact radio quasars perform better than ultraviolet and X-ray quasars at the current observational level; 2) strong degeneracy between the cosmic equation of state ($w$) and Hubble constant ($H_0$) is revealed, which highlights the importance of independent determination of $H_0$ from time-delay measurements of strongly lensed Quasars; 3)together with other standard ruler probes, such as baryon acoustic oscillation distance measurements, the combined QSO+BAO measurements are consistent with the standard $Lambda$CDM model at a constant equation of state $w=-1$; 4) ranking the cosmological models, the polynomial parametrization gives a rather good fit among the four cosmic-equation-of-state models, whereas the Jassal-Bagla-Padmanabhan (JBP) parametrization is substantially penalized by the Akaike Information Criterion and Bayesian Information Criterion criterion.



rate research

Read More

General relativity reproduces main current cosmological observations, assuming the validity of cosmic distance duality relation (CDDR) at all scales and epochs. However, CDDR is poorly tested in the redshift interval between the farthest observed Type Ia supernovae (SN Ia) and that of the Cosmic Microwave background (CMB). We present a new idea of testing the validity of CDDR, through the multiple measurements of high-redshift quasars. Luminosity distances are derived from the relation between the UV and X-ray luminosities of quasars, while angular diameter distances are obtained from the compact structure in radio quasars. This will create a valuable opportunity where two different cosmological distances from the same kind of objects at high redshifts are compared. Our constraints are more stringent than other currently available results based on different observational data and show no evidence for the deviation from CDDR at $zsim 3$. Such accurate model-independent test of fundamental cosmological principles can become a milestone in precision cosmology.
In this paper, we present a model-independent approach to calibrate the largest quasar sample. Calibrating quasar samples is essentially constraining the parameters of the linear relation between the $log$ of the ultraviolet (UV) and X-ray luminosities. This calibration allows quasars to be used as standardized candles. There is a strong correlation between the parameters characterizing the quasar luminosity relation and the cosmological distances inferred from using quasars as standardized candles. We break this degeneracy by using Gaussian process regression to model-independently reconstruct the expansion history of the Universe from the latest type Ia supernova observations. Using the calibrated quasar dataset, we further reconstruct the expansion history up to redshift of $zsim 7.5$. Finally, we test the consistency between the calibrated quasar sample and the standard $rm{Lambda}CDM$ model based on the posterior probability distribution of the GP hyperparameters. Our results show that the quasar sample is in good agreement with the standard $rm{Lambda}CDM$ model in the redshift range of the supernova, despite of mildly significant deviations taking place at higher redshifts. Fitting the standard $rm{Lambda}CDM$ model to the calibrated quasar sample, we obtain a high value of the matter density parameter $Omega_m = 0.382^{+0.045}_{-0.042}$, which is marginally consistent with the constraints from other cosmological observations.
68 - Yan Wu , Shuo Cao , Jia Zhang 2019
Cosmological applications of HII galaxies (HIIGx) and giant extragalactic HII regions (GEHR) to construct the Hubble diagram at higher redshifts require knowledge of the $L$--$sigma$ relation of the standard candles used. In this paper, we study the properties of a large sample of 156 sources (25 high-$z$ HII galaxies, 107 local HII galaxies, and 24 giant extragalactic HII regions) compiled by Terlevich et al.(2015). Using the the cosmological distances reconstructed through two new cosmology-independent methods, we investigate the correlation between the H$beta$ emission-line luminosity $L$ and ionized-gas velocity dispersion $sigma$. The method is based on non-parametric reconstruction using the measurements of Hubble parameters from cosmic clocks, as well as the simulated data of gravitational waves from the third-generation gravitational wave detector (the Einstein Telescope, ET), which can be considered as standard sirens. Assuming the emission-line luminosity versus ionized gas velocity dispersion relation, $log L ($H$beta) = alpha log sigma($H$beta)+kappa$, we find the full sample provides a tight constraint on the correlation parameters. However, similar analysis done on three different sub-samples seems to support the scheme of treating HII galaxies and giant extragalactic HII regions with distinct strategies. Using the corrected $L$--$sigma$ relation for the HII observational sample beyond the current reach of Type Ia supernovae, we obtain a value of the matter density parameter, $Omega_{m}=0.314pm0.054$ (calibrated with standard clocks) and $Omega_{m}=0.311pm0.049$ (calibrated with standard sirens), in the spatially flat $Lambda$CDM cosmology.
Gaussian processes (GP) provide an elegant and model-independent method for extracting cosmological information from the observational data. In this work, we employ GP to perform a joint analysis by using the geometrical cosmological probes such as Supernova Type Ia (SN), Cosmic chronometers (CC), Baryon Acoustic Oscillations (BAO), and the H0LiCOW lenses sample to constrain the Hubble constant $H_0$, and reconstruct some properties of dark energy (DE), viz., the equation of state parameter $w$, the sound speed of DE perturbations $c^2_s$, and the ratio of DE density evolution $X = rho_{rm de}/rho_{rm de,0}$. From the joint analysis SN+CC+BAO+H0LiCOW, we find that $H_0$ is constrained at 1.1% precision with $H_0 = 73.78 pm 0.84$ km s$^{-1}$Mpc$^{-1}$, which is in agreement with SH0ES and H0LiCOW estimates, but in $sim$6.2$sigma$ tension with the current CMB measurements of $H_0$. With regard to the DE parameters, we find $c^2_s < 0$ at $sim$2$sigma$ at high $z$, and the possibility of $X$ to become negative for $z > 1.5$. We compare our results with the ones obtained in the literature, and discuss the consequences of our main results on the DE theoretical framework.
The combination of multiple observational probes has long been advocated as a powerful technique to constrain cosmological parameters, in particular dark energy. The Dark Energy Survey has measured 207 spectroscopically--confirmed Type Ia supernova lightcurves; the baryon acoustic oscillation feature; weak gravitational lensing; and galaxy clustering. Here we present combined results from these probes, deriving constraints on the equation of state, $w$, of dark energy and its energy density in the Universe. Independently of other experiments, such as those that measure the cosmic microwave background, the probes from this single photometric survey rule out a Universe with no dark energy, finding $w=-0.80^{+0.09}_{-0.11}$. The geometry is shown to be consistent with a spatially flat Universe, and we obtain a constraint on the baryon density of $Omega_b=0.069^{+0.009}_{-0.012}$ that is independent of early Universe measurements. These results demonstrate the potential power of large multi-probe photometric surveys and pave the way for order of magnitude advances in our constraints on properties of dark energy and cosmology over the next decade.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا