Do you want to publish a course? Click here

Benchmarking and Survey of Explanation Methods for Black Box Models

192   0   0.0 ( 0 )
 Added by Francesco Bodria
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The widespread adoption of black-box models in Artificial Intelligence has enhanced the need for explanation methods to reveal how these obscure models reach specific decisions. Retrieving explanations is fundamental to unveil possible biases and to resolve practical or ethical issues. Nowadays, the literature is full of methods with different explanations. We provide a categorization of explanation methods based on the type of explanation returned. We present the most recent and widely used explainers, and we show a visual comparison among explanations and a quantitative benchmarking.



rate research

Read More

Black box systems for automated decision making, often based on machine learning over (big) data, map a users features into a class or a score without exposing the reasons why. This is problematic not only for lack of transparency, but also for possible biases hidden in the algorithms, due to human prejudices and collection artifacts hidden in the training data, which may lead to unfair or wrong decisions. We introduce the local-to-global framework for black box explanation, a novel approach with promising early results, which paves the road for a wide spectrum of future developments along three dimensions: (i) the language for expressing explanations in terms of highly expressive logic-based rules, with a statistical and causal interpretation; (ii) the inference of local explanations aimed at revealing the logic of the decision adopted for a specific instance by querying and auditing the black box in the vicinity of the target instance; (iii), the bottom-up generalization of the many local explanations into simple global ones, with algorithms that optimize the quality and comprehensibility of explanations.
We propose D-RISE, a method for generating visual explanations for the predictions of object detectors. Utilizing the proposed similarity metric that accounts for both localization and categorization aspects of object detection allows our method to produce saliency maps that show image areas that most affect the prediction. D-RISE can be considered black-box in the software testing sense, as it only needs access to the inputs and outputs of an object detector. Compared to gradient-based methods, D-RISE is more general and agnostic to the particular type of object detector being tested, and does not need knowledge of the inner workings of the model. We show that D-RISE can be easily applied to different object detectors including one-stage detectors such as YOLOv3 and two-stage detectors such as Faster-RCNN. We present a detailed analysis of the generated visual explanations to highlight the utilization of context and possible biases learned by object detectors.
The use of sophisticated machine learning models for critical decision making is faced with a challenge that these models are often applied as a black-box. This has led to an increased interest in interpretable machine learning, where post hoc interpretation presents a useful mechanism for generating interpretations of complex learning models. In this paper, we propose a novel approach underpinned by an extended framework of Bayesian networks for generating post hoc interpretations of a black-box predictive model. The framework supports extracting a Bayesian network as an approximation of the black-box model for a specific prediction. Compared to the existing post hoc interpretation methods, the contribution of our approach is three-fold. Firstly, the extracted Bayesian network, as a probabilistic graphical model, can provide interpretations about not only what input features but also why these features contributed to a prediction. Secondly, for complex decision problems with many features, a Markov blanket can be generated from the extracted Bayesian network to provide interpretations with a focused view on those input features that directly contributed to a prediction. Thirdly, the extracted Bayesian network enables the identification of four different rules which can inform the decision-maker about the confidence level in a prediction, thus helping the decision-maker assess the reliability of predictions learned by a black-box model. We implemented the proposed approach, applied it in the context of two well-known public datasets and analysed the results, which are made available in an open-source repository.
Machine learning has proved to be very successful for making predictions in travel behavior modeling. However, most machine-learning models have complex model structures and offer little or no explanation as to how they arrive at these predictions. Interpretations about travel behavior models are essential for decision makers to understand travelers preferences and plan policy interventions accordingly. Therefore, this paper proposes to apply and extend the model distillation approach, a model-agnostic machine-learning interpretation method, to explain how a black-box travel mode choice model makes predictions for the entire population and subpopulations of interest. Model distillation aims at compressing knowledge from a complex model (teacher) into an understandable and interpretable model (student). In particular, the paper integrates model distillation with market segmentation to generate more insights by accounting for heterogeneity. Furthermore, the paper provides a comprehensive comparison of student models with the benchmark model (decision tree) and the teacher model (gradient boosting trees) to quantify the fidelity and accuracy of the students interpretations.
There has been a recent resurgence of interest in explainable artificial intelligence (XAI) that aims to reduce the opaqueness of AI-based decision-making systems, allowing humans to scrutinize and trust them. Prior work in this context has focused on the attribution of responsibility for an algorithms decisions to its inputs wherein responsibility is typically approached as a purely associational concept. In this paper, we propose a principled causality-based approach for explaining black-box decision-making systems that addresses limitations of existing methods in XAI. At the core of our framework lies probabilistic contrastive counterfactuals, a concept that can be traced back to philosophical, cognitive, and social foundations of theories on how humans generate and select explanations. We show how such counterfactuals can quantify the direct and indirect influences of a variable on decisions made by an algorithm, and provide actionable recourse for individuals negatively affected by the algorithms decision. Unlike prior work, our system, LEWIS: (1)can compute provably effective explanations and recourse at local, global and contextual levels (2)is designed to work with users with varying levels of background knowledge of the underlying causal model and (3)makes no assumptions about the internals of an algorithmic system except for the availability of its input-output data. We empirically evaluate LEWIS on three real-world datasets and show that it generates human-understandable explanations that improve upon state-of-the-art approaches in XAI, including the popular LIME and SHAP. Experiments on synthetic data further demonstrate the correctness of LEWISs explanations and the scalability of its recourse algorithm.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا