No Arabic abstract
Almost all statistical and machine learning methods in analyzing brain networks rely on distances and loss functions, which are mostly Euclidean or matrix norms. The Euclidean or matrix distances may fail to capture underlying subtle topological differences in brain networks. Further, Euclidean distances are sensitive to outliers. A few extreme edge weights may severely affect the distance. Thus it is necessary to use distances and loss functions that recognize topology of data. In this review paper, we survey various topological distance and loss functions from topological data analysis (TDA) and persistent homology that can be used in brain network analysis more effectively. Although there are many recent brain imaging studies that are based on TDA methods, possibly due to the lack of method awareness, TDA has not taken as the mainstream tool in brain imaging field yet. The main purpose of this paper is provide the relevant technical survey of these powerful tools that are immediately applicable to brain network data.
In this article, we show how the recent statistical techniques developed in Topological Data Analysis for the Mapper algorithm can be extended and leveraged to formally define and statistically quantify the presence of topological structures coming from biological phenomena in datasets of CCC contact maps.
Algorithms for persistent homology and zigzag persistent homology are well-studied for persistence modules where homomorphisms are induced by inclusion maps. In this paper, we propose a practical algorithm for computing persistence under $mathbb{Z}_2$ coefficients for a sequence of general simplicial maps and show how these maps arise naturally in some applications of topological data analysis. First, we observe that it is not hard to simulate simplicial maps by inclusion maps but not necessarily in a monotone direction. This, combined with the known algorithms for zigzag persistence, provides an algorithm for computing the persistence induced by simplicial maps. Our main result is that the above simple minded approach can be improved for a sequence of simplicial maps given in a monotone direction. A simplicial map can be decomposed into a set of elementary inclusions and vertex collapses--two atomic operations that can be supported efficiently with the notion of simplex annotations for computing persistent homology. A consistent annotation through these atomic operations implies the maintenance of a consistent cohomology basis, hence a homology basis by duality. While the idea of maintaining a cohomology basis through an inclusion is not new, maintaining them through a vertex collapse is new, which constitutes an important atomic operation for simulating simplicial maps. Annotations support the vertex collapse in addition to the usual inclusion quite naturally. Finally, we exhibit an application of this new tool in which we approximate the persistence diagram of a filtration of Rips complexes where vertex collapses are used to tame the blow-up in size.
We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activation between voxel pairs is computed to produce a voxel cross-correlation coefficient matrix. Using several correlation thresholds, the cross-correlation matrix is then transformed into a network connectivity matrix and analyzed. To study a specific example, we selected data from an earlier experiment focusing on the MMN brain wave. The resulting analysis highlights significant differences between the spatial activations associated with Standard and Deviant tones, with interesting physiological implications. When compared to random data networks, physiological networks are more connected, with longer links and shorter path lengths. Furthermore, as compared to the Deviant case, Standard data networks are more connected, with longer links and shorter path lengths--i.e., with a stronger ``small worlds character. The comparison between both networks shows that areas known to be activated in the MMN wave are connected. In particular, the analysis supports the idea that supra-temporal and inferior frontal data work together in the processing of the differences between sounds by highlighting an increased connectivity in the response to a novel sound.
This paper proposes a novel topological learning framework that can integrate brain networks of different sizes and topology through persistent homology. This is possible through the introduction of a new topological loss function that enables such challenging task. The use of the proposed loss function bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations with ground truth to assess the effectiveness of the topological loss in discriminating networks with different topology. The method is further applied to a twin brain imaging study in determining if the brain network is genetically heritable. The challenge is in overlaying the topologically different functional brain networks obtained from the resting-state functional MRI (fMRI) onto the template structural brain network obtained through the diffusion MRI (dMRI).
Data analysis often concerns not only the space where data come from, but also various types of maps attached to data. In recent years, several related structures have been used to study maps on data, including Reeb spaces, mappers and multiscale mappers. The construction of these structures also relies on the so-called emph{nerve} of a cover of the domain. In this paper, we aim to analyze the topological information encoded in these structures in order to provide better understanding of these structures and facilitate their practical usage. More specifically, we show that the one-dimensional homology of the nerve complex $N(mathcal{U})$ of a path-connected cover $mathcal{U}$ of a domain $X$ cannot be richer than that of the domain $X$ itself. Intuitively, this result means that no new $H_1$-homology class can be created under a natural map from $X$ to the nerve complex $N(mathcal{U})$. Equipping $X$ with a pseudometric $d$, we further refine this result and characterize the classes of $H_1(X)$ that may survive in the nerve complex using the notion of emph{size} of the covering elements in $mathcal{U}$. These fundamental results about nerve complexes then lead to an analysis of the $H_1$-homology of Reeb spaces, mappers and multiscale mappers. The analysis of $H_1$-homology groups unfortunately does not extend to higher dimensions. Nevertheless, by using a map-induced metric, establishing a Gromov-Hausdorff convergence result between mappers and the domain, and interleaving relevant modules, we can still analyze the persistent homology groups of (multiscale) mappers to establish a connection to Reeb spaces.