We present fully differential predictions for the production cross section of a Higgs boson via the gluon fusion mechanism at next-to-next-to-next-to leading order (N$^3$LO) in QCD perturbation theory. To perform our calculation we apply the Projection-to-Born method for the first time to the calculation of the non-factorising production of a colorless final state at the LHC at N$^3$LO. We predict differential distributions for the two photon final state produced by the decay of the Higgs boson and apply fiducial cuts on the photon rapidities and momenta. The N$^3$LO corrections to these differential distributions have complex features and are in part larger than the inclusive N$^3$LO corrections to the production cross section. Overall, we observe that the inclusion of the N$^3$LO QCD corrections significantly reduces the perturbative uncertainties and leads to a stabilisation of the perturbative expansion.
We compute the factorising second-order QCD corrections to the electroweak production of a Higgs boson through vector boson fusion. Our calculation is fully differential in the kinematics of the Higgs boson and of the final state jets, and uses the antenna subtraction method to handle infrared singular configurations in the different parton-level contributions. Our results allow us to reassess the impact of the next-to-leading order (NLO) QCD corrections to electroweak Higgs-plus-three-jet production and of the next-to-next-to-leading order (NNLO) QCD corrections to electroweak Higgs-plus-two-jet production. The NNLO corrections are found to be limited in magnitude to around $pm 5%$ and are uniform in several of the kinematical variables, displaying a kinematical dependence only in the transverse momenta and rapidity separation of the two tagging jets.
We present the NLO QCD corrections for light Higgs pair production via vector boson fusion at the LHC within the CP conserving type II two higgs doublet model in the form of a fully flexible parton--level Monte Carlo program. Scale dependences on integrated cross sections and distributions are reduced with QCD K-factors of order unity.
We present the calculation of the dominant next to leading order QCD corrections to Higgs boson production in association with three jets via vector boson fusion in the form of a NLO parton-level Monte Carlo program. QCD corrections to integrated cross sections are modest, while the shapes of some kinematical distributions change appreciably at NLO. Scale uncertainties are shown to be reduced at NLO for the total cross section and for distributions. We consider a central jet veto at the LHC and analyze the veto probability for typical vector boson fusion cuts. Scale uncertainties of the veto probability are sufficiently small at NLO for precise Higgs coupling measurements at the LHC.
Higgs boson production in association with a hard central photon and two forward tagging jets is expected to provide valuable information on Higgs boson couplings in a range where it is difficult to disentangle weak-boson fusion processes from large QCD backgrounds. We present next-to-leading order QCD corrections to Higgs production in association with a photon via weak-boson fusion at a hadron collider in the form of a flexible parton-level Monte Carlo program. The QCD corrections to integrated cross sections are found to be small for experimentally relevant selection cuts, while the shape of kinematic distributions can be distorted by up to 20% in some regions of phase space. Residual scale uncertainties at next-to-leading order are at the few-percent level.
We derive the second-order QCD corrections to the production of a Higgs boson recoiling against a parton with finite transverse momentum, working in the effective field theory in which the top quark contributions are integrated out. To account for quark mass effects, we supplement the effective field theory result by the full quark mass dependence at leading order. Our calculation is fully differential in the final state kinematics and includes the decay of the Higgs boson to a photon pair. It allows one to make next-to-next-to- leading order (NNLO)-accurate theory predictions for Higgs-plus-jet final states and for the transverse momentum distribution of the Higgs boson, accounting for the experimental definition of the fiducial cross sections. The NNLO QCD corrections are found to be moderate and positive, they lead to a substantial reduction of the theory uncertainty on the predictions. We compare our results to 8 TeV LHC data from ATLAS and CMS. While the shape of the data is well-described for both experiments, we agree on the normalization only for CMS. By normalizing data and theory to the inclusive fiducial cross section for Higgs production, good agreement is found for both experiments, however at the expense of an increased theory uncertainty. We make predictions for Higgs production observables at the 13 TeV LHC, which are in good agreement with recent ATLAS data. At this energy, the leading order mass corrections to the effective field theory prediction become significant at large transverse momenta, and we discuss the resulting uncertainties on the predictions.