Do you want to publish a course? Click here

Same File, Different Changes: The Potential of Meta-Maintenance on GitHub

326   0   0.0 ( 0 )
 Added by Hideaki Hata
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Online collaboration platforms such as GitHub have provided software developers with the ability to easily reuse and share code between repositories. With clone-and-own and forking becoming prevalent, maintaining these shared files is important, especially for keeping the most up-to-date version of reused code. Different to related work, we propose the concept of meta-maintenance -- i.e., tracking how the same files evolve in different repositories with the aim to provide useful maintenance opportunities to those files. We conduct an exploratory study by analyzing repositories from seven different programming languages to explore the potential of meta-maintenance. Our results indicate that a majority of active repositories on GitHub contains at least one file which is also present in another repository, and that a significant minority of these files are maintained differently in the different repositories which contain them. We manually analyzed a representative sample of shared files and their variants to understand which changes might be useful for meta-maintenance. Our findings support the potential of meta-maintenance and open up avenues for future work to capitalize on this potential.



rate research

Read More

README files play an essential role in shaping a developers first impression of a software repository and in documenting the software project that the repository hosts. Yet, we lack a systematic understanding of the content of a typical README file as well as tools that can process these files automatically. To close this gap, we conduct a qualitative study involving the manual annotation of 4,226 README file sections from 393 randomly sampled GitHub repositories and we design and evaluate a classifier and a set of features that can categorize these sections automatically. We find that information discussing the `What and `How of a repository is very common, while many README files lack information regarding the purpose and status of a repository. Our multi-label classifier which can predict eight different categories achieves an F1 score of 0.746. To evaluate the usefulness of the classification, we used the automatically determined classes to label sections in GitHub README files using badges and showed files with and without these badges to twenty software professionals. The majority of participants perceived the automated labeling of sections based on our classifier to ease information discovery. This work enables the owners of software repositories to improve the quality of their documentation and it has the potential to make it easier for the software development community to discover relevant information in GitHub README files.
Background: Open source software has an increasing importance in modern software development. However, there is also a growing concern on the sustainability of such projects, which are usually managed by a small number of developers, frequently working as volunteers. Aims: In this paper, we propose an approach to identify GitHub projects that are not actively maintained. Our goal is to alert users about the risks of using these projects and possibly motivate other developers to assume the maintenance of the projects. Method: We train machine learning models to identify unmaintained or sparsely maintained projects, based on a set of features about project activity (commits, forks, issues, etc). We empirically validate the model with the best performance with the principal developers of 129 GitHub projects. Results: The proposed machine learning approach has a precision of 80%, based on the feedback of real open source developers; and a recall of 96%. We also show that our approach can be used to assess the risks of projects becoming unmaintained. Conclusions: The model proposed in this paper can be used by open source users and developers to identify GitHub projects that are not actively maintained anymore.
Software traceability plays a critical role in software maintenance and evolution. We conducted a systematic mapping study with six research questions to understand the benefits, costs, and challenges of using traceability in maintenance and evolution. We systematically selected, analyzed, and synthesized 63 studies published between January 2000 and May 2020, and the results show that: traceability supports 11 maintenance and evolution activities, among which change management is the most frequently supported activity; strong empirical evidence from industry is needed to validate the impact of traceability on maintenance and evolution; easing the process of change management is the main benefit of deploying traceability practices; establishing and maintaining traceability links is the main cost of deploying traceability practices; 13 approaches and 32 tools that support traceability in maintenance and evolution were identified; improving the quality of traceability links, the performance of using traceability approaches and tools are the main traceability challenges in maintenance and evolution. The findings of this study provide a comprehensive understanding of deploying traceability practices in software maintenance and evolution phase, and can be used by researchers for future directions and practitioners for making informed decisions while using traceability in maintenance and evolution.
Software testing is one of the very important Quality Assurance (QA) components. A lot of researchers deal with the testing process in terms of tester motivation and how tests should or should not be written. However, it is not known from the recommendations how the tests are written in real projects. In this paper, the following was investigated: (i) the denotation of the word test in different natural languages; (ii) whether the number of occurrences of the word test correlates with the number of test cases; and (iii) what testing frameworks are mostly used. The analysis was performed on 38 GitHub open source repositories thoroughly selected from the set of 4.3M GitHub projects. We analyzed 20,340 test cases in 803 classes manually and 170k classes using an automated approach. The results show that: (i) there exists a weak correlation (r = 0.655) between the number of occurrences of the word test and the number of test cases in a class; (ii) the proposed algorithm using static file analysis correctly detected 97% of test cases; (iii) 15% of the analyzed classes used main() function whose represent regular Java programs that test the production code without using any third-party framework. The identification of such tests is very complex due to implementation diversity. The results may be leveraged to more quickly identify and locate test cases in a repository, to understand practices in customized testing solutions, and to mine tests to improve program comprehension in the future.
Discussions is a new feature of GitHub for asking questions or discussing topics outside of specific Issues or Pull Requests. Before being available to all projects in December 2020, it had been tested on selected open source software projects. To understand how developers use this novel feature, how they perceive it, and how it impacts the development processes, we conducted a mixed-methods study based on early adopters of GitHub discussions from January until July 2020. We found that: (1) errors, unexpected behavior, and code reviews are prevalent discussion categories; (2) there is a positive relationship between project member involvement and discussion frequency; (3) developers consider GitHub Discussions useful but face the problem of topic duplication between Discussions and Issues; (4) Discussions play a crucial role in advancing the development of projects; and (5) positive sentiment in Discussions is more frequent than in Stack Overflow posts. Our findings are a first step towards data-informed guidance for using GitHub Discussions, opening up avenues for future work on this novel communication channel.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا